scholarly journals An Early Drowning Detection System for Internet of Things (IoT) Applications

Author(s):  
Muhammad Ramdhan MS ◽  
Muhammad Ali ◽  
Paulson Eberechukwu N ◽  
Nurzal Effiyana G ◽  
Samura Ali ◽  
...  
Author(s):  
NAGENDRA V. ◽  
RAKSHITHA G. ◽  
NAMBIAR K. T. SIDDHARTH ◽  
BURLE VYSHNAVI LAKSHMI ◽  
MANU D. K. ◽  
...  

Author(s):  
Jose David Alvarado Moreno ◽  
Luis Carlos Luis Garcia ◽  
Wilder Castellanos Hernandez ◽  
Anlly Milena Barrera Obando

2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
Steve W. Y. Mung ◽  
Cheuk Yin Cheung ◽  
Ka Ming Wu ◽  
Joseph S. M. Yuen

This article presents a simple wideband rectangular antenna in foldable and non-foldable (printed circuit board (PCB)) structures for Internet of Things (IoT) applications. Both are simple structures with two similar rectangular metal planes which cover multiple frequency bands such as GPS, WCDMA/LTE, and 2.4 GHz industrial, scientific, and medical (ISM) bands. This wideband antenna is suitable to integrate into the short- and long-range wireless applications such as the short-range 2.4 GHz ISM band and standard cellular bands. This lowers the overall size of the product as well as the cost in the applications. In this article, the configuration and operation principle are presented as well as its trade-offs on the design parameters. Simulated and experimental results of foldable and non-foldable (PCB) structures show that the antenna is suited for IoT applications.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1615
Author(s):  
Zeeshan Ali Khan ◽  
Ubaid Abbasi ◽  
Sung Won Kim

Low power wide area networks (LPWAN) are comprised of small devices having restricted processing resources and limited energy budget. These devices are connected with each other using communication protocols. Considering their available resources, these devices can be used in a number of different Internet of Things (IoT) applications. Another interesting paradigm is machine learning, which can also be integrated with LPWAN technology to embed intelligence into these IoT applications. These machine learning-based applications combine intelligence with LPWAN and prove to be a useful tool. One such IoT application is in the medical field, where they can be used to provide multiple services. In the scenario of the COVID-19 pandemic, the importance of LPWAN-based medical services has gained particular attention. This article describes various COVID-19-related healthcare services, using the the applications of machine learning and LPWAN in improving the medical domain during the current COVID-19 pandemic. We validate our idea with the help of a case study that describes a way to reduce the spread of any pandemic using LPWAN technology and machine learning. The case study compares k-Nearest Neighbors (KNN) and trust-based algorithms for mitigating the flow of virus spread. The simulation results show the effectiveness of KNN for curtailing the COVID-19 spread.


2021 ◽  
Vol 21 (3) ◽  
pp. 1-22
Author(s):  
Celestine Iwendi ◽  
Saif Ur Rehman ◽  
Abdul Rehman Javed ◽  
Suleman Khan ◽  
Gautam Srivastava

In this digital age, human dependency on technology in various fields has been increasing tremendously. Torrential amounts of different electronic products are being manufactured daily for everyday use. With this advancement in the world of Internet technology, cybersecurity of software and hardware systems are now prerequisites for major business’ operations. Every technology on the market has multiple vulnerabilities that are exploited by hackers and cyber-criminals daily to manipulate data sometimes for malicious purposes. In any system, the Intrusion Detection System (IDS) is a fundamental component for ensuring the security of devices from digital attacks. Recognition of new developing digital threats is getting harder for existing IDS. Furthermore, advanced frameworks are required for IDS to function both efficiently and effectively. The commonly observed cyber-attacks in the business domain include minor attacks used for stealing private data. This article presents a deep learning methodology for detecting cyber-attacks on the Internet of Things using a Long Short Term Networks classifier. Our extensive experimental testing show an Accuracy of 99.09%, F1-score of 99.46%, and Recall of 99.51%, respectively. A detailed metric representing our results in tabular form was used to compare how our model was better than other state-of-the-art models in detecting cyber-attacks with proficiency.


Sign in / Sign up

Export Citation Format

Share Document