scholarly journals Morphological differentiation of Peromyscus leucopus and P. maniculatus in East Texas

Therya ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 369-387
Author(s):  
Jessica E. Light ◽  
Lelila Siciliano-Martina ◽  
Emma Dohlanik ◽  
Grace Vielleux ◽  
David Hafner ◽  
...  

The white-footed deer mouse (Peromyscus leucopus) and the North American deer mouse (P. maniculatus) are widely distributed throughout North America, often with overlapping distributions. These species are believed to be sympatric east of the Balcones fault zone in Texas, but records from natural history collections indicate that P. maniculatus is not common from this region. Given that these two species are notoriously difficult to differentiate morphologically, it is possible that specimens have been incorrectly identified and that P. maniculatus may be rare or not present in East Texas. This study aims to determine if P. leucopus and P. maniculatus can be differentiated morphologically east of the Balcones fault zone in Texas. Cranial and external characters from genetically identified specimens representing each species were analyzed using traditional and geometric morphometric methods. Morphological analyses revealed that genetically identified specimens of P. leucopus and P. maniculatus from east of the Balcones fault zone could be differentiated using a suite of morphological characters. Many of the specimens of P. leucopus used in this study were originally misidentified, suggesting that P. maniculatus is rare in East Texas.

Therya ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 609
Author(s):  
Jessica E. Light ◽  
Leila Siciliano-Martina ◽  
Emma G. Dohnalik ◽  
Grace Vielleux ◽  
David J. Hafner ◽  
...  

2018 ◽  
Vol 154 (3) ◽  
pp. 179-196
Author(s):  
Michael Darby

Some 2,000 Ptiliidae collected in the North and South Islands of New Zealand in 1983/1984 by Peter Hammond of the Natural History Museum, London, are determined to 34 species, four of which are new to the country. As there are very few previous records, most from the Auckland district of North Island, the Hammond collection provides much new distributional data. The three new species: Nellosana insperatus sp. n., Notoptenidium flavum sp. n., and Notoptenidium johnsoni sp. n., are described and figured; the genus Ptiliodes is moved from Acrotrichinae to Ptiliinae, and Ptenidium formicetorum Kraatz recorded as a new introduction. Information is provided to aid separation of the new species from those previously recorded.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 102
Author(s):  
Paraskevi Nomikou ◽  
Dimitris Evangelidis ◽  
Dimitrios Papanikolaou ◽  
Danai Lampridou ◽  
Dimitris Litsas ◽  
...  

On 30 October 2020, a strong earthquake of magnitude 7.0 occurred north of Samos Island at the Eastern Aegean Sea, whose earthquake mechanism corresponds to an E-W normal fault dipping to the north. During the aftershock period in December 2020, a hydrographic survey off the northern coastal margin of Samos Island was conducted onboard R/V NAFTILOS. The result was a detailed bathymetric map with 15 m grid interval and 50 m isobaths and a morphological slope map. The morphotectonic analysis showed the E-W fault zone running along the coastal zone with 30–50° of slope, forming a half-graben structure. Numerous landslides and canyons trending N-S, transversal to the main direction of the Samos coastline, are observed between 600 and 100 m water depth. The ENE-WSW oriented western Samos coastline forms the SE margin of the neighboring deeper Ikaria Basin. A hummocky relief was detected at the eastern margin of Samos Basin probably representing volcanic rocks. The active tectonics characterized by N-S extension is very different from the Neogene tectonics of Samos Island characterized by NE-SW compression. The mainshock and most of the aftershocks of the October 2020 seismic activity occur on the prolongation of the north dipping E-W fault zone at about 12 km depth.


2017 ◽  
Vol 122 (6) ◽  
pp. 4208-4236 ◽  
Author(s):  
Maor Kaduri ◽  
Jean-Pierre Gratier ◽  
François Renard ◽  
Ziyadin Çakir ◽  
Cécile Lasserre

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bryan D. Griffin ◽  
Mable Chan ◽  
Nikesh Tailor ◽  
Emelissa J. Mendoza ◽  
Anders Leung ◽  
...  

AbstractWidespread circulation of SARS-CoV-2 in humans raises the theoretical risk of reverse zoonosis events with wildlife, reintroductions of SARS-CoV-2 into permissive nondomesticated animals. Here we report that North American deer mice (Peromyscus maniculatus) are susceptible to SARS-CoV-2 infection following intranasal exposure to a human isolate, resulting in viral replication in the upper and lower respiratory tract with little or no signs of disease. Further, shed infectious virus is detectable in nasal washes, oropharyngeal and rectal swabs, and viral RNA is detectable in feces and occasionally urine. We further show that deer mice are capable of transmitting SARS-CoV-2 to naïve deer mice through direct contact. The extent to which these observations may translate to wild deer mouse populations remains unclear, and the risk of reverse zoonosis and/or the potential for the establishment of Peromyscus rodents as a North American reservoir for SARS-CoV-2 remains unknown.


Author(s):  
Profico Antonio ◽  
Buzi Costantino ◽  
Castiglione Silvia ◽  
Melchionna Marina ◽  
Piras Paolo ◽  
...  

2017 ◽  
Vol 75 (2) ◽  
pp. 711-718
Author(s):  
George Geladakis ◽  
Nikolaos Nikolioudakis ◽  
George Koumoundouros ◽  
Stylianos Somarakis

Abstract Morphometric characters have traditionally been used to describe the population structure of fishes. Body shape variation, which is often environmentally induced, may provide a good record of short-term population structuring. However, factors unrelated to environmental or genetic influences on body morphology may complicate sampling and the use of morphometric features for stock discrimination. In the present study, we used geometric morphometric variables to compare the European sardine Sardina pilchardus putative stocks of the Aegean and Ionian Seas (eastern Mediterranean). Landmark data of fish collected at seven different sites were subjected to canonical analysis of principal coordinates (CAP). The average body condition of sardines from these sites was strongly and linearly related to corresponding scores along CAP1, the axis exhibiting the highest correlation with the morphometric data cloud. The average scores along CAP2 and CAP3 appeared to be linked to morphological differentiation related to temperature effects and prey availability (mesozooplankton biomass). Despite the primary and confounding effect of body condition, discrimination of different morphotypes corresponding to the Aegean and the Ionian Sea stocks was highly significant with 81% correct reallocations for the respective CAP model.


Sign in / Sign up

Export Citation Format

Share Document