scholarly journals Groundwater Resources as Influenced by Climatic Change in Shetrunji basin of Gujarat State, India

2015 ◽  
Vol 10 (3) ◽  
pp. 994-1003
Author(s):  
D. M Paradava ◽  
H. D Rank

The estimation of climatic alteration influencing on groundwater recharge will help to prepare a future plan for groundwater development and management planning for the basin. It will also be helpful for agriculture as well as other resource planning. The required shift in cropping pattern can also be judged. The study was undertaken for Shetrunji river basin having an area of 5646.98 km2. The entire area was found consisting of 17 watersheds. The climate change impact on Rainfall, Runoff and estimated groundwater recharge by 3 different methods were assessed. The groundwater recharge varied from 3.11% to 49.28%, 0% to 15.34% and 0.72% to 14.62% of rainfall by water balance, Krishna Rao (1970) and water table variation respectively. The climate change impacts favors to increase the rainfall significantly in 6 out of 17 watersheds while the runoff is found increasing in 5 out of 17 watersheds of the basin. The rainfall and runoff was influenced by the climate change in Northern part of upper reach and southernmost part of middle reach of basin. The area weighted rainfall of the Shetrunji river basin was found increasing significantly. The areal mean depth of monsoon runoff for entire Shetrunji basin was increasing significantly at the rate of 17.7 mm per decade. The groundwater recharge assessed by water balance method was found higher as compared to Krishna Rao (1970) and water level fluctuation method. The groundwater recharge expected by water balance, Krishna Rao (1970) and water level fluctuation methods is found to be enlarged in 13, 9 and 6 watersheds out of 17 watershed of the basin. The areal mean depth of groundwater recharge in Shetrunji basin during monsoon season in water level fluctuation method was found increasing significantly at the rate of 13.01 mm per decade due to climate change impacts.

2020 ◽  
Vol 186 ◽  
pp. 109544 ◽  
Author(s):  
Thundorn Okwala ◽  
Sangam Shrestha ◽  
Suwas Ghimire ◽  
S. Mohanasundaram ◽  
Avishek Datta

2014 ◽  
Vol 8 (8) ◽  
pp. 5361-5371 ◽  
Author(s):  
Abdyzhapar uulu Salamat ◽  
Jilili Abuduwaili ◽  
Nargiza Shaidyldaeva

2012 ◽  
Vol 32 ◽  
pp. 49-53 ◽  
Author(s):  
I. Pohle ◽  
H. Koch ◽  
U. Grünewald

Abstract. Lusatia is considered one of the driest regions of Germany. The climatic water balance is negative even under current climate conditions. Due to global climate change, increased temperatures and a shift of precipitation from summer to winter are expected. Therefore, it is of major interest whether the excess water in winter can be stored and to which extent it is used up on increasing evapotranspiration. Thus, this study focuses on estimating potential climate change impacts on the water balance of two subcatchments of the River Spree using the Soil and Water Integrated Model (SWIM). Climate input was taken from 100 realisations each of two scenarios of the STatistical Analogue Resampling scheme STAR assuming a further temperature increase of 0 K (scenario A) and 2 K by the year 2055 (scenario B) respectively. Resulting from increased temperatures and a shift in precipitation from summer to winter actual evapotranspiration is supposed to increase in winter and early spring, but to decrease in later spring and early summer. This is less pronounced for scenario A than for scenario B. Consequently, also the decrease in discharge and groundwater recharge in late spring is lower for scenario A than for scenario B. The highest differences of runoff generation and groundwater recharge between the two scenarios but also the highest ranges within the scenarios occur in summer and early autumn. It is planned to estimate potential climate change for the catchments of Spree, Schwarze Elster and Lusatian Neisse.


2016 ◽  
Vol 111 (3) ◽  
pp. 565 ◽  
Author(s):  
K. S. Reddy ◽  
M. Kumar ◽  
V. Maruthi ◽  
P. Lakshminarayana ◽  
Vijayalakshmi ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 702
Author(s):  
Zhongya Fan ◽  
Zhong Wang ◽  
Yiping Li ◽  
Wencai Wang ◽  
Chunyan Tang ◽  
...  

Water level fluctuation (WLF) in shallow lakes in the middle and lower reaches of the Yangtze River has been a concern of many researchers. This work aims to investigate the effects of climate change and regulation of floodgates and the Three Gorges Dam (TGD) on WLF and lake volume in Huayang Lakes during the past 52 years. The results revealed that precipitation is the dominant factor that leads to seasonal variation of lake levels, whereas regulation of floodgates and TGD are the key drivers of hydrology regime change in the past 20 years. Natural lake regime has higher water level when there is more precipitation and less lake volume. Floodgates and TGD regulations have changed this pattern since 2003, causing less difference in water level in spite of more precipitation and lake recession. Under the combined impacts of floodgates and TGD regulations, Huayang Lakes have experienced a prolonged outflow time since 2003 and the contribution rate caused by the floodgates and TGD regulations has increased by 19.90%. Additionally, the water level of Huayang Lakes decreased by approximately 0.3~0.5 m from September to November, but it showed no alteration from January to March in the past two decades. This indicated that floodgate regulations used for agricultural irrigation and fishery culture dominate the hydrology regime in winter and early spring. This study is beneficial for aquatic ecosystem protection in floodgate-controlled lakes under the circumstance of climate change and vigorous anthropology activities.


Sign in / Sign up

Export Citation Format

Share Document