scholarly journals Rhizobium Leguminosarum: A Model Arsenic Resistant, Arsenite Oxidizing Bacterium Possessing Plant Growth Promoting Attributes

2021 ◽  
Vol 16 (1) ◽  
pp. 84-93
Author(s):  
Aritri Laha ◽  
Somnath Bhattacharyya ◽  
Sudip Sengupta ◽  
Kallol Bhattacharyya ◽  
Sanjoy GuhaRoy

The threat of arsenic (As) pollution has become serious and leading to opt of low-cost microbial remediation strategies.Some bacteria have the ability to resist As. A group of rhizosphere bacteria have the ability to absorb arsenic. So these bacteria may be a good candidate for arsenic bioremediation from contaminated environment. Our present study of identifying suitable rhizobacterial strains led to the isolation of As-tolerant strains from arsenic pollutedrhizospheric soils of lentil in West Bengal, India.The isolated rhizobacterial strain LAR-7 had a high MIC (minimum inhibitory concentration) towards arsenate (260 mM) and arsenite (27.5 mM) and transformed 39% of arenite to arsenate under laboratory condition. Further, the strain LAR-7 had enormous plant growth-promoting characteristics (PGP), as categorized by efficient ability to solubilize phosphate, siderophore production, production of indole acetic acid-like molecules, ACC deaminase production, and nodule formation under As stressed condition. Based on 16S rRNA homology the LAR-7 was identified as Rhizobium leguminosarum andemerged as the most potent strain for As decontamination and plant growth promoter under the stress environment of As.

2021 ◽  
Author(s):  
Aritri Laha ◽  
Somnath Bhattacharyya ◽  
Sudip Sengupta ◽  
Kallol Bhattacharyya ◽  
Sanjoy GuhaRoy

Abstract The menace of arsenic (As) pollution being severe warrants opting for low cost microbial remediation strategies. The present study of identifying suitable bacterial strains led to isolation of eleven As-tolerant strains from the As contaminated rhizosphere soils of West Bengal, India. They were found to oxidize/reduce 55%-31.6% of 5 mM As(III) and 73%-37.6% of 5 mM As(V) within 12 hrs. The four isolates (BcAl-1, JN 73, LAR-2 and AR-30) had high level of As(III) oxidase activity along with higher level of As(V) and As(III) resistance. The presence of aoxB gene was observed in these four As(III) oxidizing isolates. Evaluation of plant growth promoting characteristics revealed that BcAl-1 (Burkholderia cepacia), JN73 (Burkholderia metallica), AR-30 (Burkholderia cenocepacia) and LAR-2 (Burkholderia sp) had enormous plant growth-promoting characteristics (PGP), including ability to solubilize phosphate, siderophore production, indole acetic acid like molecules production, ACC deaminase production and nodule formation under As stressed condition. BcAl-1 and JN73 emerged as the most promising traits in As removal as well as plant growth promotion.


2019 ◽  
Vol 219 ◽  
pp. 12-25 ◽  
Author(s):  
Constanza Belén Lobo ◽  
María Silvina Juárez Tomás ◽  
Emilce Viruel ◽  
Marcela Alejandra Ferrero ◽  
María Ester Lucca

2019 ◽  
Vol 11 (2) ◽  
pp. 346-351
Author(s):  
Deepika Chhabra ◽  
Poonam Sharma

Bacteria that colonize plant tissues other than rhizobia and are beneficial for plant growth referred to non rhizobial plant growth-promoting endophytic bacteria (PGPEB). This study was designed to assay the biocontrol activity of plant growth promoting endophytic bacterial isolates those found positive for P. solubilization, ACC deaminase, Indole acetic acid and Gibberelic acid production. These bacterial isolates were obtained from chickpea (Cicer arietinum L.) tissues (roots and nodules).  In a previous study a total of 263 non rhizobial endophytic bacterial isolates were isolated. Out of 263 isolates, 64.5% and 34.5% were Gram positive and negative, respectively. Further for biochemical characterization, catalase, oxidase, citrate utilization, nitrate reduction, methyl red and Voges Proskauer’s tests, were performed. On the basis of P solubilization, ACC deaminase, Indole acetic acid and Gibberelic acid production 75 potential isolates were selected and screened for their biocontrol activity viz. (production of cell wall degrading enzymes, production of HCN and fluorescent pigment). Out of 75 isolates, only 29 isolates produced cellulase, 64 isolates were able to produce protease and 28 were positive for both cellulose and protease. Of 75 endophytic isolates 12 isolates (7 from root tissue and 5 from nodules tissue, respectively) were positive for HCN production and 16 isolates were found to be fluorescent pigment producer under µv ligh. As chemical fertilizers and pesticides have detrimental effects on the environment. So these bacterial endophytic isolates will be used not only as a biofertilizer because of their plant growth promotional activities but also used as an alternative of synthetic chemicals for control of several plant diseases.


2019 ◽  
Vol 7 (3) ◽  
pp. 82 ◽  
Author(s):  
Oyungerel Natsagdorj ◽  
Hisayo Sakamoto ◽  
Dennis Santiago ◽  
Christine Santiago ◽  
Yoshitake Orikasa ◽  
...  

Utilization of plant growth-promoting bacteria colonizing roots is environmentally friendly technology instead of using chemicals in agriculture, and understanding of the effects of their colonization modes in promoting plant growth is important for sustainable agriculture. We herein screened the six potential plant growth-promoting bacteria isolated from Beta vulgaris L. (Rhizobium sp. HRRK 005, Polaromonas sp. HRRK 103, Variovorax sp. HRRK 170, Mesorhizobium sp. HRRK 190, Streptomyces sp. HRTK 192, and Novosphingobium sp. HRRK 193) using a series of biochemical tests. Among all strains screened, HRRK 170 had the highest potential for plant growth promotion, given its ability to produce plant growth substances and enzymes such as siderophores and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, respectively, concomitantly with active growth in a wider range of temperatures (10–30 °C) and pH (5.0–10.0). HRRK 170 colonized either as spots or widely on the root surface of all vegetable seedlings tested, but significant growth promotion occurred only in two vegetables (Chinese cabbage and green pepper) within a certain cell density range localized in the plant roots. The results indicate that HRRK 170 could function as a plant growth promoter, but has an optimum cell density for efficient use.


2007 ◽  
Vol 53 (12) ◽  
pp. 1291-1299 ◽  
Author(s):  
Youai Hao ◽  
Trevor C. Charles ◽  
Bernard R. Glick

In addition to the well-known roles of indoleacetic acid and cytokinin in crown gall formation, the plant hormone ethylene also plays an important role in this process. Many plant growth-promoting bacteria (PGPB) encode the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which can degrade ACC, the immediate precursor of ethylene in plants, to α-ketobutyrate and ammonia and thereby lower plant ethylene levels. To study the effect of ACC deaminase on crown gall development, an ACC deaminase gene from the PGPB Pseudomonas putida UW4 was introduced into Agrobacterium tumefaciens C58, so that the effect of ACC deaminase activity on tumour formation in tomato and castor bean plants could be assessed. Plants were also coinoculated with A. tumefaciens C58 and P. putida UW4 or P. putida UW4-acdS– (an ACC deaminase minus mutant strain). In both types of experiments, it was observed that the presence of ACC deaminase generally inhibited tumour development on both tomato and castor bean plants.


2013 ◽  
Vol 1 (1) ◽  
pp. 11-15 ◽  
Author(s):  
Umesh P. Shrivastava ◽  
Ashok Kumar

A total of nine strains of plant growth promoting rhizobacteria were analyzed for ACC deaminase activity, where highest ACC deaminase activity was found in Klebsiella sp strain ECI-10A (539.1 nmol α-keto butyrate/ mg protein/ h) and lowest in Microbacterium sp strain ECI-12A (122.0 nmol α-keto butyrate/ mg protein/ h). Although Microbacterium sp strain ECI-12A showed lowest level of ACC deaminase activity, but, the species of Microbacterium isolated from rhizosphere is the first report. Microbacterium sp strain ECI-12A was also analyzed under varying conditions of time, amount of 1-Aminocyclopropane-1- carboxylate (ACC), and temperature for optimization of the ACC deaminase activity. The optimum activity was recorded with the supplementation of 5mM ACC at 30°C temperature after 24h of culture growth. All the nine strains showed acdS gene in the PCR amplification of that gene. No any rhizospheric Microbacterium species showing ACC deaminase activity have been reported earlier, therefore, we report here ACC deaminase activity in Microbacterium sp ECI-12A isolated from rice rhizosphere is a novel finding. DOI: http://dx.doi.org/10.3126/ijasbt.v1i1.7921 Int J Appl Sci Biotechnol, 2013, Vol. 1(1): 11-15


Sign in / Sign up

Export Citation Format

Share Document