scholarly journals MESHLESS SIMULATION OF HEAT CONDUCTION IN FUNCTIONALLY GRADED MATERIALS SUBJECTED TO TEMPERATURE-DEPENDENT HEAT SOURCES

2021 ◽  
Vol 2 (1) ◽  
pp. 27
Author(s):  
Mas Irfan P Hidayat
2006 ◽  
Vol 74 (5) ◽  
pp. 861-874 ◽  
Author(s):  
Florin Bobaru

We present a numerical approach for material optimization of metal-ceramic functionally graded materials (FGMs) with temperature-dependent material properties. We solve the non-linear heterogeneous thermoelasticity equations in 2D under plane strain conditions and consider examples in which the material composition varies along the radial direction of a hollow cylinder under thermomechanical loading. A space of shape-preserving splines is used to search for the optimal volume fraction function which minimizes stresses or minimizes mass under stress constraints. The control points (design variables) that define the volume fraction spline function are independent of the grid used in the numerical solution of the thermoelastic problem. We introduce new temperature-dependent objective functions and constraints. The rule of mixture and the modified Mori-Tanaka with the fuzzy inference scheme are used to compute effective properties for the material mixtures. The different micromechanics models lead to optimal solutions that are similar qualitatively. To compute the temperature-dependent critical stresses for the mixture, we use, for lack of experimental data, the rule-of-mixture. When a scalar stress measure is minimized, we obtain optimal volume fraction functions that feature multiple graded regions alternating with non-graded layers, or even non-monotonic profiles. The dominant factor for the existence of such local minimizers is the non-linear dependence of the critical stresses of the ceramic component on temperature. These results show that, in certain cases, using power-law type functions to represent the material gradation in FGMs is too restrictive.


2007 ◽  
Vol 04 (04) ◽  
pp. 603-619 ◽  
Author(s):  
S. M. HAMZA-CHERIF ◽  
A. HOUMAT ◽  
A. HADJOUI

The h-p version of the finite element method (FEM) is considered to determine the transient temperature distribution in functionally graded materials (FGM). The h-p version may be regarded as the marriage of conventional h-version and p-version. The graded Fourier p-element is used to set up the two-dimensional heat conduction equations. The temperature is formulated in terms of linear shape functions used generally in FEM plus a variable number of trigonometric shape functions representing the internal degrees of freedom (DOF). In the graded Fourier p-element, the function of the thermal conductivity is computed exactly within the conductance matrix and thus overcomes the computational errors caused by the space discretization introduced by the FEM. Explicit and easily programmed trigonometric enriched capacitance, conductance matrices and heat load vectors are derived for plates and cylinders by using symbolic computation. The convergence properties of the h-p version proposed and the results of the numbers of test problems are in good agreement with the analytical solutions. Also, the effect of the non-homogeneity of the FGM on the temperature distribution is considered.


Sign in / Sign up

Export Citation Format

Share Document