Numerical simulation of dynamic Interactions of an arctic spar with drifting level ice

2016 ◽  
Vol 6 (4) ◽  
pp. 345-362 ◽  
Author(s):  
H.K. Jang ◽  
H.Y. Kang ◽  
M.H. Kim
2021 ◽  
Vol 9 (6) ◽  
pp. 680
Author(s):  
Hui Li ◽  
Yan Feng ◽  
Muk Chen Ong ◽  
Xin Zhao ◽  
Li Zhou

Selecting an optimal bow configuration is critical to the preliminary design of polar ships. This paper proposes an approach to determine the optimal bow of polar ships based on present numerical simulation and available published experimental studies. Unlike conventional methods, the present approach integrates both ice resistance and calm-water resistance with the navigating time. A numerical simulation method of an icebreaking vessel going straight ahead in level ice is developed using SPH (smoothed particle hydrodynamics) numerical technique of LS-DYNA. The present numerical results for the ice resistance in level ice are in satisfactory agreement with the available published experimental data. The bow configurations with superior icebreaking capability are obtained by analyzing the sensitivities due to the buttock angle γ, the frame angle β and the waterline angle α. The calm-water resistance is calculated using FVM (finite volume method). Finally, an overall resistance index devised from the ship resistance in ice/water weighted by their corresponding weighted navigation time is proposed. The present approach can be used for evaluating the integrated resistance performance of the polar ships operating in both a water route and ice route.


2013 ◽  
Vol 1 (1-2) ◽  
pp. 3-24 ◽  
Author(s):  
Wanming Zhai ◽  
He Xia ◽  
Chengbiao Cai ◽  
Mangmang Gao ◽  
Xiaozhen Li ◽  
...  

2020 ◽  
Vol 8 (9) ◽  
pp. 692
Author(s):  
Bao-Yu Ni ◽  
Zi-Wang Chen ◽  
Kai Zhong ◽  
Xin-Ang Li ◽  
Yan-Zhuo Xue

In most previous ice–ship interaction studies involving fluid effects, ice was taken as unbreakable. Building breakable level ice on water domain is still a big challenge in numerical simulation. This paper overcomes this difficulty and presents a numerical modeling of a ship moving in level ice on the water by using a one-way CFD-DEM (computational fluid dynamics-discrete element method) coupling method. The detailed numerical processes and techniques are introduced. The ice crack propagation process including radial and circular cracks have been observed. Numerical results are compared with previous experimental data and good agreement has been achieved. The results show that water resistance is an order of magnitude smaller than ice resistance during the ice-breaking process. Ice resistance shows strong oscillation along with ice failure process, which are affected by ship speed and ice thickness significantly.


Author(s):  
Biao Su ◽  
Kaj Riska ◽  
Torgeir Moan

The ice-worthy ship must have a verifiable turning ability in the specified ice conditions. At present, most studies on ship maneuverability in ice are conducted by field measurements. In this paper a numerical method which is introduced for predicting ship performance in level ice, is applied to simulate ship turning in level ice. A real icebreaker is modeled in the simulation program. The calculated results are analyzed and compared with the full-scale data measured during turning tests. A good agreement is achieved.


Author(s):  
Fang Li ◽  
Mikko Kotilainen ◽  
Floris Goerlandt ◽  
Pentti Kujala

For the evaluation of ship performance in ice and ice loads on the ship hull, numerical simulation methods have been increasingly developed in recent years. In these models, the shapes of ice cusps broken from the intact ice sheet are idealized as either part of a circle or a triangle. Effects arising from the geometry of the loading area are neglected or idealized. Since the proper definition of the geometry of ice cusps is one of the key factors in numerical models, this paper introduces a new icebreaking pattern based on theoretical deviation. The finite difference method is adopted to approximate the deflection field of the wedge plate. This model takes a large set of factors as input while consuming little computation time. The outcome provides some new features compared to previous models. The results are validated using full-scale measurements of ice cusps around a ship hull, based on stereo camera recording and image processing. The validation shows that the derived method is appropriate in predicting realistic icebreaking patterns. Hence, it is plausible that its implementation in numerical models for ship performance in level ice will lead to improved prediction of the ship performance and ice loads on the hull.


2022 ◽  
Vol 244 ◽  
pp. 110382
Author(s):  
Zhe Chen ◽  
Yanping He ◽  
Yupei Ren ◽  
Yadong Liu

Author(s):  
Li Zhou ◽  
Biao Su ◽  
Kaj Riska ◽  
Torgeir Moan

The dynamic ice forces on a moored icebreaking tanker induced by drifting level ice were simulated with a two dimensional numerical model. Based on a heading controller which aimed to keep the hull head towards the drifting ice, ice resistance on ship was mainly estimated when taking the relative motion between the hull and ice into account. The mooring force and responses of the moored vessel were also looked into through parameter sensitivity studies with different ice thicknesses and ice drift speeds.


Sign in / Sign up

Export Citation Format

Share Document