Investigation on the failure mechanism of steel-concrete steel composite beam

2016 ◽  
Vol 20 (6) ◽  
pp. 1183-1191 ◽  
Author(s):  
Guang P. Zou ◽  
Pei X. Xia ◽  
Xin H. Shen ◽  
Peng Wang
2005 ◽  
Vol 32 (2) ◽  
pp. 314-328 ◽  
Author(s):  
Young K Ju ◽  
Do-Hyun Kim ◽  
Sang-Dae Kim

The number of high-rise buildings has greatly increased in Korea, and storey height is a significant component of tall residential buildings due to the limited city area. To reduce storey height, the wide beam has been adopted in some projects in Seoul such as Trump World, Galleria Palace, and Richencia. The joints between the wide beam and the core wall were too narrow to place the reinforcement, however. This paper investigates a newly developed structural system called the innovative, technical, economical, and convenient hybrid system (iTECH system). The iTECH system has an asymmetric steel assembly with web openings, where the top plate is welded on top of inverted structural "tees" whose cut is referred to as a "honeycomb" type. Both sides of the web and the slab are filled with cast-in-place concrete. The shear capacity was experimentally evaluated and verified, with parameters determined by factors that shared the shear strength of the iTECH beam. The steel web, inner concrete panel, and outer concrete panel contributed to the shear strength of the iTECH beam. The shear stirrup did not contribute much to the shear strength, however, and therefore a design equation using the steel web and inner concrete panel was suggested.Key words: composite beam, shear capacity, monotonic test, high-rise building.


Author(s):  
Nadiah Loqman ◽  
Nor Azizi Safiee ◽  
Wong Hui Kah ◽  
Nabilah Abu Bakar ◽  
Noor Azline Mohd Nasir

2021 ◽  
Vol 9 (1) ◽  
pp. 79-85
Author(s):  
M. Faisal Fadlelbari

Cantilevers are a part of our life, they are everywhere: bridg–es, building’s balconies, traffic signs, car parking shades even the aircraft’s wings. The long cantilevers of the buildings always present as a big challenge to structural engineers in their practice life. The structural behavior of these cantilevers depends on a several factors, such as rigidity of the slab, rigidity of columns or walls, span continuity... etc. But the real dilemma lies in the economical choice. This paper focused on the cantilever’s structural analysis according to the used structural. Moreover, it shows a comparison between three structural system choices: Vierendeel Girder, Post - Tensioned Girders and Steel Composite Beam in a graph. The objective of this paper is to give a guideline to the structural engineers to choose the optimum system of the building cantilevers according to the factors mentioned earlier. At the end, the paper illustrated the Vierendeel girder is the most efficient system for cantilevers. Accordingly, recommendations result on that up to 4.0 m cantilever length steel beams will be enough, for more than 4.0 and less than or equal to 6.0 m post-tension is recommended, and for more than 6.0 m cantilever we should use Vierendeel girder.  


2015 ◽  
Vol 19 (5) ◽  
pp. 525-543 ◽  
Author(s):  
Guang P Zou ◽  
Pei X Xia ◽  
Xin H Shen ◽  
Peng Wang

The interface slip will appear between the steel plates and concrete while the steel–concrete–steel composite beam under loading. It may influence the mechanical properties of the composite beam. In this paper, through theoretical analysis of the steel–concrete–steel composite beam, differential equation of interface slip is established at first. By simulating the real boundary, the formulas of interface slip are calculated under uniform and arbitrary concentrated load. Then, the axial force, the sectional curvature, and deformation of composite beams are obtained. In order to validate the reliability of the theoretical analysis, the deformation of 18 samples is calculated by using the deformation formulas of steel–concrete–steel composite beam. The results are in good agreement with the experimental consequences. Through an example, the mechanical properties of composite beams (axial force, sectional curvature, and deformation) are analyzed under interfacial slip. With the decreasing of interfacial slip, axial force of upper plate increases, and sectional curvature and deflection decrease. For lower steel plate, the interfacial slip has smaller effect.


Structures ◽  
2021 ◽  
Vol 32 ◽  
pp. 681-690
Author(s):  
Satheeskumar Navaratnam ◽  
Deighton Widdowfield Small ◽  
Perampalam Gatheeshgar ◽  
Keerthan Poologanathan ◽  
Julian Thamboo ◽  
...  

2019 ◽  
Vol 29 (3) ◽  
pp. 228-240 ◽  
Author(s):  
Sangeetha Palanivelu

Abstract Steel-concrete composite structures are widely used in the current construction of bridges and multi-storey buildings. The effect of shear connectors in a cold-formed steel-composite beam was studied under flexure. The number of channel connectors in the specimen was varied and the same was compared with a specimen without shear connectors. The performance and failure of cold-formed steel-composite beams were then studied. The presence of shear connectors in the tension zone prevents the formation of cracks which are the major cause of failure in a beam subjected to bending. The load-carrying capacity is greater in a composite beam and an increase in the number of channel connectors from one to five increases the load-carrying capacity by 60 % as compared to a specimen without a connector. A composite beam with five connectors is more ductile, with a ductility factor of 14. The Composite beams were also analysed using the finite element software ANSYS and were found to have good agreement with the experimental results.


2018 ◽  
Vol 881 ◽  
pp. 98-105
Author(s):  
Henricus Priyosulistyo ◽  
Fredy Picauly ◽  
Bambang Suhendro ◽  
Andreas Triwiyono

Damping is one of the several important parameters in the dynamic system. It reduces amplitude response of a structure, especially around the resonance. The higher the damping, the better the performance (more comfort, lower stress, less fatigue), and the longer the life cycle of the structure will be. There are many types of damper amongst other is the tuned mass damper (TMD), where mass and spring are designed in such that the TMD frequency is close to the natural frequency of the structure in question where the phase angle is about 180 degree out of phase. Applying steel-rubber composite beam as a damper in the TMD system is expected to increase the damping of the structure of interest. The objective of this study is to test experimentally and numerically the dynamic parameters of the rubber-steel composite beam upon a cantilever support system under static load-displacement test and flexural dynamic excitation. The addition of steel (in the form of wire mesh) embedded in the rubber beam significantly increases the stiffness, but the damping ratio, at a small range of displacement. The effectiveness of rubber material in the steel-rubber composite beam is expected when large displacement occurs, meaning that more energy dissipation and larger damping ratio. The established numerical model is able to generate dynamic parameters close to results of the experimental model, but the damping ratios.


Sign in / Sign up

Export Citation Format

Share Document