scholarly journals Investigation on Combustion in Diesel Engines using a Constant Volume Combustion Chamber : Effect of initial Temperature

1979 ◽  
Vol 22 (174) ◽  
pp. 1818-1825 ◽  
Author(s):  
Hajime FUJIMOTO ◽  
Toshio SHIMADA ◽  
Tokeshi SATO
Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2565
Author(s):  
Mohammad Salman ◽  
Sung Chul Kim

Present-day direct injection (DI) diesel engines with a high power density of displacement are not just promoting an expansion in the utilization of high-temperature resistant alloys in pistons yet, in addition, the expanded cylinder air pressures. When the temperature of the diesel engines piston exceeds a certain limit, it assumes a critical role at the start of sprays. The target of the present investigation was to look at the effects of cylinder air pressures (CAP) (10–25 bar) and high hot surface temperatures (HST) (350–450 °C). The ignition delay (ID) of pure diesel and that of diesel with Iftex clean system D (a cetane enhancer) are investigated experimentally. The experiments are performed by using a constant volume combustion chamber (CVCC) with a single hole pintle-type nozzle mounted on its head. A strong dependence of ID on the CAPs and HSTs was observed. A CAP of 25 bar is much inferior to the precombustion pressure of DI diesel engines; however, it is the case that combustion typical features are the same in spite of an inferior CAP, HST, and injection pressure. The ID tends to decrease to very small values with an increase in either of the two parameters. At a CAP of 25 bar, the measured ID of diesel with fuel additive is 45.8% lower than the pure diesel. Further, the ID of diesel with fuel additive at a 300 bar injection pressure and 25 bar CAP decreases at a rate of close to 0.2 ms/bar.


2021 ◽  
Vol 1826 (1) ◽  
pp. 012077
Author(s):  
Monizi C. Lima ◽  
Jackson S. Oliveira ◽  
Carlos S. Nunes ◽  
Paulo L. F. Simões ◽  
Paulo Roberto. G. Couto ◽  
...  

2018 ◽  
Author(s):  
Mohammadrasool Morovatiyan ◽  
Martia Shahsavan ◽  
John Hunter Mack

A constant volume combustion chamber (CVCC) was constructed to enable material synthesis procedures that are sensitive to temperature, pressure, and ambient species concentrations. Material synthesis processes require specific operating conditions in order to carry out the desired chemical reactions and property transformations, including the creation of paper-templated metals and nanoparticles. The 1.13 liter combustion chamber includes a test stand for conducting the material synthesis experiments. A premixed fuel-air mixture is ignited at a desired equivalence ratio in order to produce the required synthesis conditions. In comparison to furnaces and ovens, this approach provides greater flexibility for materials synthesis procedures. Computational modeling using adaptive mesh refinement, alongside preliminary experimental testing results, confirms that the CVCC can provide the appropriate conditions to synthesize paper-templated metals. The approach demonstrates that the CVCC can be a viable alternative to a furnace for use in materials synthesis applications.


Sign in / Sign up

Export Citation Format

Share Document