scholarly journals Fluid Flow and Heat Transfer around Two Circular Cylinders of Different Diameters in Cross Flow

1979 ◽  
Vol 22 (167) ◽  
pp. 715-723 ◽  
Author(s):  
Munehiko HIWADA ◽  
Tatsuhisa TAGUCHI ◽  
Ikuo MABUICHI ◽  
Masaya KUMADA
1982 ◽  
Vol 25 (209) ◽  
pp. 1737-1745 ◽  
Author(s):  
Munehiko Hiwada ◽  
Ikuo Mabuchi ◽  
Hideaki Yanagihara

1978 ◽  
Vol 44 (385) ◽  
pp. 3134-3144 ◽  
Author(s):  
Munehiko HIWADA ◽  
Tatsuhisa TAGUCHI ◽  
Ikuo MABUCHI ◽  
Masaya KUMADA

2016 ◽  
Vol 8 (4) ◽  
pp. 201-212
Author(s):  
BK Dhar ◽  
SK Mahapatra ◽  
SK Maharana ◽  
A Sarkar ◽  
SS Sahoo

The problems of fluid flow and heat transfer phenomena over an array of cylinders are quite prominent in fluid dynamics and industry applications. The current work focuses on fluid flow and heat transfer analysis over two heated rotating cylinders arranged in tandem. The flow of water over heated cylinders faces a phenomenon of phase change from liquid (water) to vapor phase (steam). The mechanism of this phase change is studied through a numerical simulation supplemented with verification of the code and validation. The problem is simulated when flows from two cylinders in a tandem arrangement become interacting and non-interacting. The Eulerian model is used during simulation to comprehend the multiphase phenomena. The volume fractions of both the phases such as water and vapor and heat transfer coefficients of both the cylinders have been computed and presented as findings of the problem. The mass and heat transfer mechanism is unidirectional from one phase to the other phase. The vapor fraction of each phase is to be observed and compared when three different rotations are given to the two cylinders immersed in a turbulent flow of water.


2018 ◽  
Vol 16 ◽  
pp. 12-20
Author(s):  
Houssem Laidoudi ◽  
Oluwole Daniel Makinde

In this paper, we numerically examine the mixed convective flow around a confined tandem heated circular cylinders embedded in a vertical channel in order to determine exactly the effects of opposing thermal buoyancy and distance between cylinders (S) on the behavior of fluid flow and heat transfer rate. The dimensionless governing equations involving momentum, continuity and energy are obtained and solved in a steady laminar flow regime for the conditions:Re= 5 to 40 andS= 0 to 5d, at fixed values of Prandtl numberPr= 1, Richardson numberRi= 1 and blockage ratioβ= 1/5. The fluid flow and temperature field are illustrated in terms of streamline and isotherm contours. The average Nusselt number is also computed to quantify the effect of fluid flow and heat transfer characteristics on amount of heat transfer rate.


10.30544/481 ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 87-102 ◽  
Author(s):  
Houssem Laidoudi

The two-dimensional numerical investigation is well accomplished to understand the behavior of buoyancy-driven flow in closed annular space. The studied domain consists of a pair of equal-sized circular cylinders in tandem arrangement confined in a circular enclosure which is filled with incompressible Newtonian fluid. The inner cylinders are identical in size and they are supposed to be hot with constant temperature, the outer circular enclosure is kept cold with a constant temperature. The descriptive governing equations of continuity, momentum and energy for the present problem are solved numerically using the finite-volume method. The present research studies the effects of thermal buoyancy strength, the thermophysical characteristics of the fluid, and the size of the inner cylinders on the flow patterns inside the circular domain and rate of heat transfer exchanging between the inner cylinders and fluid flow. The results showed that the studied governing parameters significantly affect the fluid flow and heat transfer rate. An increase in the diameter of inner cylinders makes the effect of buoyancy strength on fluid flow and heat transfer negligible for all values of thermo-physical parameters. Also, the average Nusselt number of each inner cylinder is computed and plotted for industrial applications.


Sign in / Sign up

Export Citation Format

Share Document