scholarly journals VIBRATION OF PSEUDO-SHOCK IN STRAIGHT DUCT : 2ND REPORT, CALCULATION OF STATIC PRESSURE FLUCTUATION

1984 ◽  
Vol 27 (229) ◽  
pp. 1393-1398 ◽  
Author(s):  
Ryuichiro YAMANE ◽  
Mamoru TAKAHASHI ◽  
Hiroshi SAITO
Author(s):  
Jibing Lan ◽  
Yonghui Xie ◽  
Di Zhang ◽  
Jing Shu

A rectangular bar which just likes a forward-backward facing step was designed to passive control of the Low-Pressure Turbine (LPT) PakB cascade suction surface separation. Large-eddy simulation (LES) was adopted to analyze the separated-transition flows for the PakB cascade with and without the rectangular bar at Re (Reynolds number based on inlet condition and axial chord) of 86,000 and the freestream turbulence intensity of 1%. Computed results of uncontrolled condition agree well with the experimental data of Lake et al.[6, 7]. And the LES results shown that the rectangular bar control device was successful to control the LPT cascade suction surface separation and provides about 10% kinetic loss coefficient reduction from the uncontrolled one. Unsteady flow structures were also investigated in detail. Static pressure fluctuation frequency at six locations, ranging from 0.56Cx to 0.95Cx axial chord location and with a constant wall normal distance y/h = 1.0, was the same to the separation bubble vortex shedding frequency. Unsteady fluctuation velocity was examined too, which confirmed that the separation bubble vortex frequency was the same to the suction surface static pressure fluctuation frequency.


Author(s):  
Ahmed Ramadhan Al-Obaidi ◽  
Ali Qubian

Abstract In this current study, the transient numerical calculations using CFD code are carried out under different outlet impeller diameters for the flow field within a centrifugal pump under single-phase and cavitation conditions. Both qualitative and quantitative analyses are carried out on all of these results in order to better understand the flow structure within a centrifugal pump. Also, the investigations using different outlet impeller diameters configurations relating to the static pressure, velocity magnitude, vapour volume fraction variations, as well as pressure fluctuations in both time and frequency domain at the impeller and volute of the pump are analysed. Velocity and static pressure variations of the pump under different outlet impeller diameters range (200, 210 and 220 mm) are investigated. Reliable model is developed and validated, at various pump operating conditions, to analyse the characteristics of pressure fluctuations in both time and frequency domain. Cavitation occurrence, under different outlet impeller diameters and flow rates, are detected and correlated, using a CFD model (volume fraction distributions). Based on the developed model’s findings, at the set operating conditions ranges, the distribution and impact (cavitation and head-wises) of both the pressure and velocity are analysed. The average pressure fluctuation in the volute for do = 210 mm is higher than for do = 200 mm by about 6.74%, also the maximum pressure fluctuation for do = 220 mm is higher than for do = 210 mm by around 7.4%. Furthermore, the maximum pressure fluctuation in the impeller for do = 210 mm is higher than for do = 200 mm by 12.48%, also for do = 220 mm is higher than for do = 210 mm by 10.8%. The developed CFD models are proved valuable tools in identifying and optimizing the pump performance and characterization. The head for when do = 220 mm is higher than for when do = 200 mm under both single-phase and cavitation conditions by around 14.13% and 14.69%. The maximum pressure fluctuation for do = 200 mm is lower than for do = 210 mm by 41.58%. Furthermore, the maximum pressure fluctuation at the impeller for do = 220 mm is higher than the two models. There is a small clearance between the impeller and the volute for this model, leading to the pressure fluctuation amplitudes being higher than the other above models.


2014 ◽  
Vol 598 ◽  
pp. 206-209
Author(s):  
Xiao Hua Wang ◽  
Zhe Xiao ◽  
Kai Zhang

In this paper, SimpleC algorithm and Realizable turbulence model are applied to simulate the detailed flow field of oscillator, which is the key component of the vertical drainage jet flowmeter. Based on analyzing the pressure fluctuation of fluid in the feedback channels of the oscillator at different flowrates, the results indicate that there is an obviously linear relationship between velocity and oscillation frequency of static pressure in the vertical feedback channels within a certain range of flowrate. The achievements can be helpful to the optimization the design of vertical drainage jet flowmeter.


Author(s):  
Xi Shen ◽  
Desheng Zhang ◽  
Bin Xu ◽  
Ruijie Zhao ◽  
Yongxin Jin ◽  
...  

In this paper, the large eddy simulation is utilized to simulate the flow field in a mixed-flow pump based on the standard Smagorinsky subgrid scale model, which is combined with the experiments to investigate pressure fluctuations under low flow conditions. The experimental results indicated that the amplitude of fluctuation at the impeller inlet is the highest, and increases with the reduction of the flow rate. The main frequencies of pressure fluctuation at the impeller inlet, impeller outlet, and vane inlet are blades passing frequency, while the main frequency at the vane outlet changes with the flow rate. The results of the simulation showed that the axial plane velocity at impeller inlet undergoes little change under 0.8 Qopt. In case of 0.4 Qopt, however, the flow field at impeller inlet becomes complicated with the axial plane velocity changing significantly. The flow separation is generated at the leading edge of the suction surface at t* = 0.0416 under 0.4 Qopt, which is caused by the increase of the incidence angle and the influence of the tip leakage flow. When the impeller rotates from t* = 0.0416 to t* = 0.1249, the flow separation intensified and the swirling strength of the separation vortex is gradually increased, leading to the reduction of the static pressure, the rise of adverse pressure gradient, and the generation of backflow. The static pressure at the leading edge of the impeller recovers gradually until the backflow is reached. In addition, the flow separation is the main reason for the intensification of the pressure fluctuation.


1998 ◽  
Vol 64 (623) ◽  
pp. 2057-2064 ◽  
Author(s):  
Akiyoshi IIDA ◽  
Toshio OTAGURO ◽  
Chisachi KATO ◽  
Shinichi SHIMODE

Sign in / Sign up

Export Citation Format

Share Document