scholarly journals Experimental Investigation of Air-Water Two-Phase Upflow across Horizontal Tube Bundles : Part II, Pressure Drop

1984 ◽  
Vol 27 (230) ◽  
pp. 1616-1624 ◽  
Author(s):  
Masakazu Kondo
2017 ◽  
Vol 63 (4) ◽  
pp. 471-480
Author(s):  
Xin Zou ◽  
Qinglu Song ◽  
Zhiqiang Yang ◽  
Qixiong Tang ◽  
Xiaoru Zhuang ◽  
...  

1996 ◽  
Vol 118 (1) ◽  
pp. 124-131 ◽  
Author(s):  
R. Dowlati ◽  
M. Kawaji ◽  
A. M. C. Chan

An experimental study has been conducted to determine the void fraction, frictional pressure drop, and heat transfer coefficient for vertical two-phase crossflow of refrigerant R-113 in horizontal tube bundles under saturated flow boiling conditions. The tube bundle contained 5 × 20 tubes in a square in-line array with pitch-to-diameter ratio of 1.3. R-113 mass velocity ranged from 50 to 970 kg/m2s and test pressure from 103 to 155 kPa. The void fraction data exhibited strong mass velocity effects and were significantly less than the homogeneous and in-tube flow model predictions. They were found to be well correlated in terms of the dimensionless gas velocity, jg*. The two-phase friction multiplier data could be correlated well in terms of the Lockhart–Martinelli parameter. The validity of these correlations was successfully tested by predicting the total pressure drop from independent R-113 boiling experiments. The two-phase heat transfer coefficient data were found to agree well with existing pool boiling correlations, implying that nucleate boiling was the dominant heat transfer mode in the heat flux range tested.


1985 ◽  
Vol 50 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Andreas Zahn ◽  
Lothar Ebner ◽  
Kurt Winkler ◽  
Jan Kratochvíl ◽  
Jindřich Zahradník

The effect of two-phase flow regime on decisive hydrodynamic and mass transfer characteristics of horizontal-tube gas-liquid reactors (pressure drop, liquid holdup, kLaL) was determined in a cocurrent-flow experimental unit of the length 4.15 m and diameter 0.05 m with air-water system. An adjustable-height weir was installed in the separation chamber at the reactor outlet to simulate the effect of internal baffles on reactor hydrodynamics. Flow regime maps were developed in the whole range of experimental gas and liquid flow rates both for the weirless arrangement and for the weir height 0.05 m, the former being in good agreement with flow-pattern boundaries presented by Mandhane. In the whole range of experi-mental conditions pressure drop data could be well correlated as a function of gas and liquid flow rates by an empirical exponential-type relation with specific sets of coefficients obtained for individual flow regimes from experimental data. Good agreement was observed between values of pressure drop obtained for weirless arrangement and data calculated from the Lockhart-Martinelli correlation while the contribution of weir to the overall pressure drop was well described by a relation proposed for the pressure loss in closed-end tubes. In the region of negligible weir influence values of liquid holdup were again succesfully correlated by the Lockhart-Martinelli relation while the dependence of liquid holdup data on gas and liquid flow rates obtained under conditions of significant weir effect (i.e. at low flow rates of both phases) could be well described by an empirical exponential-type relation. Results of preliminary kLaL measurements confirmed the decisive effect of the rate of energy dissipation on the intensity of interfacial mass transfer in gas-liquid dispersions.


2005 ◽  
Vol 4 (2) ◽  
Author(s):  
G. Ribatskia ◽  
J. R. Thome

This paper presents a state-of-the-art review of the hydrodynamic aspects of two-phase flow across horizontal tube bundles. The review covers studies related to the evaluation of void fraction, two-phase flow behaviors and pressure drops on the shell side of staggered and in-line tube bundles for upward, downward and side-to-side flows. This study of the literature critically describes the proposed flow pattern maps and semi-empirical correlations for predicting void fraction and frictional pressure drop. These predicting methods are generally based on experimental results for adiabatic air-water flows. A limited number of experimental studies with R-11 and R-113 were also carried out in the past. The review shows noticeable discrepancies among the available prediction methods. Finally, this study suggests that further research focusing on the development of representative databanks and new prediction methods is still necessary.


Sign in / Sign up

Export Citation Format

Share Document