Convective Heat Transfer of the Rotational and Axial Flow between Two Concentric Cylinders

1964 ◽  
Vol 7 (26) ◽  
pp. 385-391 ◽  
Author(s):  
Fujio TACHIBANA ◽  
Sukeo FUKUI
Author(s):  
Chi Young Lee ◽  
Chang Hwan Shin ◽  
Wang Kee In ◽  
Dong Seok Oh ◽  
Tae Hyun Chun

The convective heat transfer of rod bundle flow with spacer grid was investigated preliminarily for nuclear reactor core application. As the test fluid, the water was used. To simulate the nuclear fuel assembly, 4×4 rod bundle with P/D (=pitch between rods/rod diameter) of ∼1.35 was prepared together with a spacer grid with twist-mixing vane. A single heated section with five thermocouples embedded in the surface along the circumferential direction was installed around the center subchannel. The measurements of wall temperatures were carried out upstream and downstream of spacer grid. For the rod bundle flow at the inlet of spacer grid (i.e., upstream of spacer grid), the wall temperatures at the gap and subchannel centers exhibited the higher and lower, respectively, which was because in the subchannel center, the axial flow velocity became higher, as compared with the gap center. On the other hand, downstream of spacer grid, the rod wall toward the tip of twist-mixing vane showed the lowest temperature in the measurements along the circumferential direction of rod wall. Near the twist-mixing vane, the averaged wall temperature was observed to be remarkably low, which implies that the twist-mixing vane is an effective tool to enhance the convective heat transfer performance. However, along the axial flow direction behind the spacer grid, the averaged wall temperatures became to increase, and the enhancement of convective heat transfer performance by mixing vane faded away.


2011 ◽  
Vol 133 (8) ◽  
Author(s):  
C. Camci ◽  
B. Gumusel

The present study explains a steady-state method of measuring convective heat transfer coefficient on the casing of an axial flow turbine. The goal is to develop an accurate steady-state heat transfer method for the comparison of various casing surface and tip designs used for turbine performance improvements. The freestream reference temperature, especially in the tip gap region of the casing, varies monotonically from the rotor inlet to rotor exit due to work extraction in the stage. In a heat transfer problem of this nature, the definition of the freestream temperature is not as straightforward as constant freestream temperature type problems. The accurate determination of the convective heat transfer coefficient depends on the magnitude of the local freestream reference temperature varying in axial direction, from the rotor inlet to exit. The current study explains a strategy for the simultaneous determination of the steady-state heat transfer coefficient and freestream reference temperature on the smooth casing of a single stage rotating turbine facility. The heat transfer approach is also applicable to casing surfaces that have surface treatments for tip leakage control. The overall uncertainty of the method developed is between 5% and 8% of the convective heat transfer coefficient.


2001 ◽  
Vol 123 (4) ◽  
pp. 637-686 ◽  
Author(s):  
Michael G. Dunn

The primary focus of this paper is convective heat transfer in axial flow turbines. Research activity involving heat transfer generally separates into two related areas: predictions and measurements. The problems associated with predicting heat transfer are coupled with turbine aerodynamics because proper prediction of vane and blade surface-pressure distribution is essential for predicting the corresponding heat transfer distribution. The experimental community has advanced to the point where time-averaged and time-resolved three-dimensional heat transfer data for the vanes and blades are obtained routinely by those operating full-stage rotating turbines. However, there are relatively few CFD codes capable of generating three-dimensional predictions of the heat transfer distribution, and where these codes have been applied the results suggest that additional work is required. This paper outlines the progression of work done by the heat transfer community over the last several decades as both the measurements and the predictions have improved to current levels. To frame the problem properly, the paper reviews the influence of turbine aerodynamics on heat transfer predictions. This includes a discussion of time-resolved surface-pressure measurements with predictions and the data involved in forcing function measurements. The ability of existing two-dimensional and three-dimensional Navier–Stokes codes to predict the proper trends of the time-averaged and unsteady pressure field for full-stage rotating turbines is demonstrated. Most of the codes do a reasonably good job of predicting the surface-pressure data at vane and blade midspan, but not as well near the hub or the tip region for the blade. In addition, the ability of the codes to predict surface-pressure distribution is significantly better than the corresponding heat transfer distributions. Heat transfer codes are validated against measurements of one type or another. Sometimes the measurements are performed using full rotating rigs, and other times a much simpler geometry is used. In either case, it is important to review the measurement techniques currently used. Heat transfer predictions for engine turbines are very difficult because the boundary conditions are not well known. The conditions at the exit of the combustor are generally not well known and a section of this paper discusses that problem. The majority of the discussion is devoted to external heat transfer with and without cooling, turbulence effects, and internal cooling. As the design community increases the thrust-to-weight ratio and the turbine inlet temperature, there remain many turbine-related heat transfer issues. Included are film cooling modeling, definition of combustor exit conditions, understanding of blade tip distress, definition of hot streak migration, component fatigue, loss mechanisms in the low turbine, and many others. Several suggestions are given herein for research and development areas for which there is potentially high payoff to the industry with relatively small risk.


Sign in / Sign up

Export Citation Format

Share Document