scholarly journals Representation of Topology Using Homology Groups and Its Application to Structural Optimization. Fitness Value Based upon Topology for Unanalyzable Structures Generated in Genetic Algorithm and Its Effect on Performance of Optimization.

2000 ◽  
Vol 43 (3) ◽  
pp. 234-241 ◽  
Author(s):  
Yasuhiko Nakanishi
2010 ◽  
Vol 450 ◽  
pp. 556-559
Author(s):  
Dong Mei Cheng ◽  
Chang Hua Qiu ◽  
Cheng Yang Liu

Traditional genetic algorithms put all the individuals in one population to cross and adopt the same set of evolutionary parameters and genetic operators to guide the evolution, which will easily lead to local convergence and poor searching efficiency. A multi evolutionary system co-exist genetic algorithm is developed to overcome the fluctuations of the whole evolution process through dividing individuals into several sub-populations according to the fitness value. Moreover, the improved algorithm prevents the early convergent and increases the diversity of individuals by supplying these sub-populations different evolutionary systems. The effectiveness and feasibility of the algorithm are verified by typical genetic algorithm test functions and an engineering case. The results show that the genetic algorithm has a good versatility, high convergence rate and solution precision.


2014 ◽  
Vol 496-500 ◽  
pp. 429-435
Author(s):  
Xiao Ping Zhong ◽  
Peng Jin

Firstly, a two-level optimization procedure for composite structure is investigated with lamination parameters as design variables and MSC.Nastran as analysis tool. The details using lamination parameters as MSC.Nastran input parameters are presented. Secondly, with a proper equivalent stiffness laminate built to substitute for the lamination parameters, a two-level optimization method based on the equivalent stiffness laminate is proposed. Compared with the lamination parameters-based method, the layer thicknesses of the equivalent stiffness laminate are adopted as continuous design variables at the first level. The corresponding lamination parameters are calculated from the optimal layer thicknesses. At the second level, genetic algorithm (GA) is applied to identify an optimal laminate configuration to target the lamination parameters obtained. The numerical example shows that the proposed method without considering constraints of lamination parameters can obtain better optimal results.


Author(s):  
Sourav Kundu ◽  
Kentaro Kamagata ◽  
Shigeru Sugino ◽  
Takeshi Minowa ◽  
Kazuto Seto

Abstract A Genetic Algorithm (GA) based approach for solution of optimal control design of flexible structures is presented in this paper. The method for modeling flexible structures with distributed parameters as reduced-order models with lumped parameters, which has been developed previously, is employed. Due to some restrictions on controller design it is necessary to make a reduced-order model of the structure. Once the model is established the design of flexible structures is considered as a feedback search procedure where a new solution is assigned some fitness value for the GA and the algorithm iterates till some satisfactory design solution is achieved. We propose a pole assignment method to determine the evaluation (fitness) function to be used by the GA to find optimal damping ratios in passive elements. This paper demonstrates the first results of a genetic algorithm approach to solution of the vibration control problem for practical control applications to flexible tower-like structures.


2018 ◽  
Vol 7 (4.33) ◽  
pp. 130
Author(s):  
Atiqa Zukreena Zakuan ◽  
Shuzlina Abdul-Rahman ◽  
Hamidah Jantan ◽  
. .

Succession planning is a subset of talent management that deals with multi-criteria and uncertainties which are quite complicated, ambiguous, fuzzy and troublesome. Besides that, the successor selection involves the process of searching the best candidate for a successor for an optimal selection decision. In an academic scenario, the quality of academic staff contributes to achieving goals and improving the performance of the university at the international level. The process of selecting appropriate academic staff requires good criteria in decision-making. The best candidate's position and criteria for the selection of academic staff is the responsibility of the Human Resource Management (HRM) to select the most suitable candidate for the required position. The various criteria that are involved in selecting academic staff includes research publication, teaching skills, personality, reputation and financial performance. Previously, most studies on multi-criteria decision-making adopt Fuzzy Analytical Hierarchy Process (FAHP). However, this method is more complex because it involved many steps and formula and may not produce the optimum results. Therefore, Genetic Algorithm (GA) is proposed in this research to address this problem in which a fitness function for the successor selection is based on the highest fitness value of each chromosome.    


Author(s):  
Ali Kaveh ◽  
S.R. Hoseini Vaez ◽  
Pedram Hosseini

In this study, the Modified Dolphin Monitoring (MDM) operator is used to enhance the performance of some metaheuristic algorithms. The MDM is a recently presented operator that controls the population dispersion in each iteration. Algorithms are selected from some well-established algorithms. Here, this operator is applied on Differential Evolution (DE), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Vibrating Particles System (VPS), Enhanced Vibrating Particles System (EVPS), Colliding Bodied Optimization (CBO) and Harmony Search (HS) and the performance of these algorithms are evaluated with and without this operator on three well-known structural optimization problems. The results show the performance of this operator on these algorithms for the best, the worst, average and average weight of the first quarter of answers.


2004 ◽  
Vol 35 (5) ◽  
pp. 32-43 ◽  
Author(s):  
Tetsuyuki Takahama ◽  
Setsuko Sakai ◽  
Takumi Ichimura ◽  
Yoshinori Isomichi

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Rongji Zhang ◽  
Feng Sun ◽  
Ziwen Song ◽  
Xiaolin Wang ◽  
Yingcui Du ◽  
...  

Traffic flow forecasting is the key to an intelligent transportation system (ITS). Currently, the short-term traffic flow forecasting methods based on deep learning need to be further improved in terms of accuracy and computational efficiency. Therefore, a short-term traffic flow forecasting model GA-TCN based on genetic algorithm (GA) optimized time convolutional neural network (TCN) is proposed in this paper. The prediction error was considered as the fitness value and the genetic algorithm was used to optimize the filters, kernel size, batch size, and dilations hyperparameters of the temporal convolutional neural network to determine the optimal fitness prediction model. Finally, the model was tested using the public dataset PEMS. The results showed that the average absolute error of the proposed GA-TCN decreased by 34.09%, 22.42%, and 26.33% compared with LSTM, GRU, and TCN in working days, while the average absolute error of the GA-TCN decreased by 24.42%, 2.33%, and 3.92% in weekend days, respectively. The results indicate that the model proposed in this paper has a better adaptability and higher prediction accuracy in short-term traffic flow forecasting compared with the existing models. The proposed model can provide important support for the formulation of a dynamic traffic control scheme.


Sign in / Sign up

Export Citation Format

Share Document