Effect of Fluid Shear Stress Application to Cultured Endothelial Cells Using Immediately Expanded Flow Chamber

Author(s):  
Atsushi FURUKAWA ◽  
Hyu AKABANE ◽  
Kaito KANEKO ◽  
Yuji SHIMOGONYA ◽  
Noriyuki KATAOKA
1999 ◽  
Author(s):  
T. Ohashi ◽  
H. Sugawara ◽  
Y. Ishii ◽  
M. Sato

Abstract Under fluid shear stress, applied both in vivo and in vitro, vascular endothelial cells show morphological changes. After applying shear stress, cultured endothelial cells showed elongation and orientation to the flow direction (Kataoka et al., 1998). Moreover, statistical image analysis showed that intercellular F-actin distributions were confirmed to change depending on the shear stress and the flow direction. Thus, the endothelial cell morphology relates closely with the cytoskeletal structures. Intercellular stress distributions in the cells may be also accompanied by the reorganization of cytoskeletal structures. The use of both atomic force microscopy measurements (AFM) of endothelial cell surface topography and computational fluid dynamics of shear stress distributions acting on the cell surface, it has revealed that the surface geometry defined the detailed distribution of shear stress (Davies et al., 1995).


1992 ◽  
Vol 34 (4) ◽  
pp. 445-453
Author(s):  
Norio Aita ◽  
Akira Fujimura ◽  
Hitoshi Yokosuka ◽  
Fumio Tsuzuku ◽  
Yohichiro Nozaka

Author(s):  
Toshiro Ohashi ◽  
Yusaku Niida ◽  
Ryoichi Tanaka ◽  
Masaaki Sato

Under fluid shear stress, vascular endothelial cells (ECs) cultured in a monolayer are known to exhibit marked elongation and orientation to the direction of flow [1]. It is also observed that intracellular F-actin filament distributions changed depending on the amplitude of shear stress and the direction of flow, suggesting morphology of ECs is closely related to cytoskeltal structure [2]. ECs generate contractile forces by the actin-myosin machinery and the forces are transmitted to underlying substrate as cellular traction forces. We hypothesize that reorganization of cytoskeletal structures regulates traction forces in ECs exposed to fluid shear stress. In order to measure traction forces and cell morphology simultaneously, we have developed a newly designed flow-imposed device in which a substrate with arrays of elastomeric micropillars (3 μm in diameter and 10 μm in height) is integrated on the bottom of a parallel plate flow chamber. In this study, traction force distributions and morphological changes in GFP-tagged ECs in a monolayer under fluid flow are simultaneously evaluated through image analysis in a spatial and a temporal manner.


2000 ◽  
Vol 278 (4) ◽  
pp. H1401-H1406 ◽  
Author(s):  
Mark A. Haidekker ◽  
Nicolas L'Heureux ◽  
John A. Frangos

Fluid shear stress (FSS) has been shown to be an ubiquitous stimulator of mammalian cell metabolism. Although many of the intracellular signal transduction pathways have been characterized, the primary mechanoreceptor for FSS remains unknown. One hypothesis is that the cytoplasmic membrane acts as the receptor for FSS, leading to increased membrane fluidity, which in turn leads to the activation of heterotrimetric G proteins (13). 9-(Dicyanovinyl)-julolidine (DCVJ) is a fluorescent probe that integrates into the cell membrane and changes its quantum yield with the viscosity of the environment. In a parallel-plate flow chamber, confluent layers of DCVJ-labeled human endothelial cells were exposed to different levels of FSS. With increased FSS, a reduced fluorescence intensity was observed, indicating an increase of membrane fluidity. Step changes of FSS caused an approximately linear drop of fluorescence within 5 s, showing fast and almost full recovery after shear cessation. A linear dose-response relationship between shear stress and membrane fluidity changes was observed. The average fluidity increase over the entire cell monolayer was 22% at 26 dyn/cm2. This study provides evidence for a link between FSS and membrane fluidity, and suggests that the membrane is an important flow mechanosensor of the cell.


Sign in / Sign up

Export Citation Format

Share Document