Dependency of Molecular Structures on Mechanical Properties of Polyimide by Molecular Dynamics Simulations

2003 ◽  
Vol 2003.16 (0) ◽  
pp. 487-488
Author(s):  
Toshiki MATSUOKA ◽  
Masaru ZAKO ◽  
Shigenobu OGATA ◽  
Yoji SHIBUTANI
2013 ◽  
Vol 4 ◽  
pp. 429-440 ◽  
Author(s):  
Hlengisizwe Ndlovu ◽  
Alison E Ashcroft ◽  
Sheena E Radford ◽  
Sarah A Harris

We examine how the different steric packing arrangements found in amyloid fibril polymorphs can modulate their mechanical properties using steered molecular dynamics simulations. Our calculations demonstrate that for fibrils containing structural defects, their ability to resist force in a particular direction can be dominated by both the number and molecular details of the defects that are present. The simulations thereby suggest a hierarchy of factors that govern the mechanical resilience of fibrils, and illustrate the general principles that must be considered when quantifying the mechanical properties of amyloid fibres containing defects.


RSC Advances ◽  
2016 ◽  
Vol 6 (33) ◽  
pp. 28121-28129 ◽  
Author(s):  
Yanan Xu ◽  
Mingchao Wang ◽  
Ning Hu ◽  
John Bell ◽  
Cheng Yan

The mechanical properties of titanium dioxide (TiO2) nanotubes are studied based on molecular dynamics simulations.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3264
Author(s):  
Vladik A. Avetisov ◽  
Maria A. Frolkina ◽  
Anastasia A. Markina ◽  
Alexander D. Muratov ◽  
Vladislav S. Petrovskii

The intensive development of nanodevices acting as two-state systems has motivated the search for nanoscale molecular structures whose dynamics are similar to those of bistable mechanical systems, such as Euler arches and Duffing oscillators. Of particular interest are the molecular structures capable of spontaneous vibrations and stochastic resonance. Recently, oligomeric molecules that were a few nanometers in size and exhibited the bistable dynamics of an Euler arch were identified through molecular dynamics simulations of short fragments of thermo-responsive polymers subject to force loading. In this article, we present molecular dynamics simulations of short pyridine-furan springs a few nanometers in size and demonstrated the bistable dynamics of a Duffing oscillator with thermally-activated spontaneous vibrations and stochastic resonance.


Sign in / Sign up

Export Citation Format

Share Document