Exploring the mechanical properties of two-dimensional carbon-nitride polymer nanocomposites by molecular dynamics simulations

2021 ◽  
pp. 115004
Author(s):  
Qinghua Zhang ◽  
Bohayra Mortazavi ◽  
Xiaoying Zhuang ◽  
Fadi Aldakheel
2019 ◽  
Vol 1 (8) ◽  
pp. 2891-2900 ◽  
Author(s):  
Ning Liu ◽  
Mathew Becton ◽  
Liuyang Zhang ◽  
Keke Tang ◽  
Xianqiao Wang

Mechanical properties, especially negative Poisson's, of 2D sinusoidal lattice metamaterials based on 2D materials depends highly on both geometrical factors and tuned mechanical anisotropy according to our generic coarse-grained molecular dynamics simulations.


2015 ◽  
Vol 1726 ◽  
Author(s):  
Eric Perim ◽  
Douglas S. Galvao

ABSTRACTNanoscrolls consist of sheets rolled up into a papyrus-like form. Their open ends produce great radial flexibility, which can be exploited for a large variety of applications, from actuators to hydrogen storage. They have been successfully synthesized from different materials, including carbon and boron nitride. In this work we have investigated, through fully atomistic molecular dynamics simulations, the dynamics of scroll formation for a series of graphene-like carbon nitride (CN) two-dimensional systems: g-CN, triazine-based (g-C3N4), and heptazine-based (g-C3N4). Carbon nitride (CN) structures have been attracting great attention since their prediction as super hard materials. Recently, graphene-like carbon nitride (g-CN) structures have been synthesized with distinct stoichiometry and morphologies. By combining these unique CN characteristics with the structural properties inherent to nanoscrolls new nanostructures with very attractive mechanical and electronic properties could be formed. Our results show that stable nanoscrolls can be formed for all of CN structures we have investigated here. As the CN sheets have been already synthesized, these new scrolled structures are perfectly feasible and within our present-day technology.


2018 ◽  
Vol 53 (9) ◽  
pp. 1261-1274 ◽  
Author(s):  
Jafar Amraei ◽  
Jafar E Jam ◽  
Behrouz Arab ◽  
Roohollah D Firouz-Abadi

In the current work, the effect of interphase region on the mechanical properties of polymer nanocomposites reinforced with nanoparticles is studied. For this purpose, a closed-form interphase model as a function of radial distance based on finite-size representative volume element is suggested to estimate the mechanical properties of particle-reinforced nanocomposites. The effective Young’s and shear moduli of thermoplastic polycarbonate-based nanocomposites for a wide range of sizes and volume fractions of silicon carbide nanoparticles are investigated using the proposed interphase model and molecular dynamics simulations. In order to investigate the effect of particle size, several unit cells of the same volume fraction, but with different particle radii have been considered. The micromechanics-based homogenization results are in good agreement with the results of molecular dynamics simulations for all models. This study demonstrates that the suggested micromechanical interphase model has the capacity to estimate effective mechanical properties of polymer-based nanocomposites reinforced with spherical inclusions.


2019 ◽  
Vol 21 (34) ◽  
pp. 18714-18726 ◽  
Author(s):  
Naishen Gao ◽  
Guanyi Hou ◽  
Jun Liu ◽  
Jianxiang Shen ◽  
Yangyang Gao ◽  
...  

Using coarse-grained molecular-dynamics simulations, we have successfully fabricated ideal, mechanically-interlocked polymer nanocomposites exhibiting a significant mechanical enhancement effect.


Author(s):  
Bharti bharti ◽  
Debabrata Deb

We use molecular dynamics simulations to investigate the ordering phenomena in two-dimensional (2D) liquid crystals over the one-dimensional periodic substrate (1DPS). We have used Gay-Berne (GB) potential to model the...


2013 ◽  
Vol 4 ◽  
pp. 429-440 ◽  
Author(s):  
Hlengisizwe Ndlovu ◽  
Alison E Ashcroft ◽  
Sheena E Radford ◽  
Sarah A Harris

We examine how the different steric packing arrangements found in amyloid fibril polymorphs can modulate their mechanical properties using steered molecular dynamics simulations. Our calculations demonstrate that for fibrils containing structural defects, their ability to resist force in a particular direction can be dominated by both the number and molecular details of the defects that are present. The simulations thereby suggest a hierarchy of factors that govern the mechanical resilience of fibrils, and illustrate the general principles that must be considered when quantifying the mechanical properties of amyloid fibres containing defects.


Sign in / Sign up

Export Citation Format

Share Document