A study of ideal grain-growth process based on large-scale multi-phase-field simulations

2016 ◽  
Vol 2016.29 (0) ◽  
pp. 4_221
Author(s):  
Eisuke MIYOSHI ◽  
Tomohiro TAKAKI ◽  
Shinji SAKANE ◽  
Munekazu OHNO ◽  
Yasushi SHIBUTA ◽  
...  
2019 ◽  
Vol 2019.32 (0) ◽  
pp. 049
Author(s):  
Eisuke MIYOSHI ◽  
Tomohiro TAKAKI ◽  
Munekazu Ohno ◽  
Yasushi SHIBUTA ◽  
Shinji SAKANE ◽  
...  

2019 ◽  
Vol 159 ◽  
pp. 160-176 ◽  
Author(s):  
Ramanathan Perumal ◽  
Michael Selzer ◽  
Britta Nestler

2018 ◽  
Vol 53 (21) ◽  
pp. 15165-15180 ◽  
Author(s):  
Eisuke Miyoshi ◽  
Tomohiro Takaki ◽  
Munekazu Ohno ◽  
Yasushi Shibuta ◽  
Shinji Sakane ◽  
...  

2007 ◽  
Vol 558-559 ◽  
pp. 1177-1181 ◽  
Author(s):  
Philippe Schaffnit ◽  
Markus Apel ◽  
Ingo Steinbach

The kinetics and topology of ideal grain growth were simulated using the phase-field model. Large scale phase-field simulations were carried out where ten thousands grains evolved into a few hundreds without allowing coalescence of grains. The implementation was first validated in two-dimensions by checking the conformance with square-root evolution of the average grain size and the von Neumann-Mullins law. Afterwards three-dimensional simulations were performed which also showed fair agreement with the law describing the evolution of the mean grain size against time and with the results of S. Hilgenfeld et al. in 'An Accurate von Neumann's Law for Three-Dimensional Foams', Phys. Rev. Letters, 86(12)/2685, March 2001. Finally the steady state grain size distribution was investigated and compared to the Hillert theory.


2007 ◽  
Vol 539-543 ◽  
pp. 2437-2442
Author(s):  
Yoshihiro Suwa ◽  
Yoshiyuki Saito ◽  
Hidehiro Onodera

The kinetics and topology of grain growth in three dimensions were simulated using a phase-field model with anisotropic grain-boundary mobilities. In order to perform large scale calculations we applied both modifications of algorithms and parallel coding techniques to the Fan and Chen's phase-field algorithm. Kinetics of abnormal grain growth is presented. It is observed that the grains of a minor component which are at the beginning surrounded preferentially by boundaries of high mobility grow faster than the grains of a major component until the texture reverses completely. Additionally, topological results of grain structures, such as grain size distributions and grain face distributions, are discussed


Sign in / Sign up

Export Citation Format

Share Document