Computer Simulation of Grain Growth in Three Dimensions by the Phase Field Model with Anisotropic Grain-Boundary Mobilities

2007 ◽  
Vol 539-543 ◽  
pp. 2437-2442
Author(s):  
Yoshihiro Suwa ◽  
Yoshiyuki Saito ◽  
Hidehiro Onodera

The kinetics and topology of grain growth in three dimensions were simulated using a phase-field model with anisotropic grain-boundary mobilities. In order to perform large scale calculations we applied both modifications of algorithms and parallel coding techniques to the Fan and Chen's phase-field algorithm. Kinetics of abnormal grain growth is presented. It is observed that the grains of a minor component which are at the beginning surrounded preferentially by boundaries of high mobility grow faster than the grains of a major component until the texture reverses completely. Additionally, topological results of grain structures, such as grain size distributions and grain face distributions, are discussed

2007 ◽  
Vol 558-559 ◽  
pp. 1101-1106 ◽  
Author(s):  
Kyung Jun Ko ◽  
Pil Ryung Cha ◽  
Jong Tae Park ◽  
Jae Kwan Kim ◽  
Nong Moon Hwang

Phase-field model (PFM) in multiple orientation fields was used to simulate the grain growth in three-dimensions (3-D) for isotropic and anisotropic grain boundary energy. In the simulation, the polycrystalline microstructure was described by a set of non-conserved order parameters and each order parameter describes each orientation of grains. For isotropic grain boundary energy, the simulation showed the microstructure evolution of normal grain growth. For anisotropic grain boundary energy, however, the simulation showed that certain grains which share a high fraction of low energy grain boundaries with other grains have a high probability to grow by wetting along triple junctions and can grow abnormally with a growth advantage of solid-state wetting. The PFM simulation shows the realistic microstructural evolution of island and peninsular grains during abnormal grain growth by solid-state wetting.


2007 ◽  
Vol 558-559 ◽  
pp. 1177-1181 ◽  
Author(s):  
Philippe Schaffnit ◽  
Markus Apel ◽  
Ingo Steinbach

The kinetics and topology of ideal grain growth were simulated using the phase-field model. Large scale phase-field simulations were carried out where ten thousands grains evolved into a few hundreds without allowing coalescence of grains. The implementation was first validated in two-dimensions by checking the conformance with square-root evolution of the average grain size and the von Neumann-Mullins law. Afterwards three-dimensional simulations were performed which also showed fair agreement with the law describing the evolution of the mean grain size against time and with the results of S. Hilgenfeld et al. in 'An Accurate von Neumann's Law for Three-Dimensional Foams', Phys. Rev. Letters, 86(12)/2685, March 2001. Finally the steady state grain size distribution was investigated and compared to the Hillert theory.


2001 ◽  
Vol 677 ◽  
Author(s):  
Ingo Steinbach ◽  
Markus Apel

ABSTRACTThe kinetics of grain growth in multicrystalline materials is determined by the interplay of curvature driven grain boundary motion and interfacial stress balance at the vertices of the grain boundaries. A comprehensive way to treat both effects in one model is given by the time dependent Ginzburg Landau model or phase field model. The paper presents the application of a multi phase field model, recently developed for solidification processes to grain growth of a multicrystalline structure. The specific feature of this multi phase field model is its ability to treat each grain boundary with its individual characteristics dependent on the type of the grain boundary, its orientation or the local pinning at precipitates. The pinning effect is simulated on the nanometer scale resolving the interaction of an individual precipitate with a curved grain boundary. From these simulations an effective pinning force is deduced and a model of driving force dependent grain boundary mobility is formulated accounting for the pinning effect on the mesoscopic scale of the grain growth simulation. 2-D grain growth simulations are presented.


Sign in / Sign up

Export Citation Format

Share Document