Concurrent grain growth and coarsening of two-phase microstructures; large scale phase-field study

2019 ◽  
Vol 159 ◽  
pp. 160-176 ◽  
Author(s):  
Ramanathan Perumal ◽  
Michael Selzer ◽  
Britta Nestler
Materialia ◽  
2018 ◽  
Vol 1 ◽  
pp. 104-113 ◽  
Author(s):  
Tomohiro Takaki ◽  
Shinji Sakane ◽  
Munekazu Ohno ◽  
Yasushi Shibuta ◽  
Takayuki Aoki ◽  
...  

2021 ◽  
Vol 186 ◽  
pp. 109992
Author(s):  
Eisuke Miyoshi ◽  
Tomohiro Takaki ◽  
Shinji Sakane ◽  
Munekazu Ohno ◽  
Yasushi Shibuta ◽  
...  

2018 ◽  
Vol 53 (21) ◽  
pp. 15165-15180 ◽  
Author(s):  
Eisuke Miyoshi ◽  
Tomohiro Takaki ◽  
Munekazu Ohno ◽  
Yasushi Shibuta ◽  
Shinji Sakane ◽  
...  

2014 ◽  
Vol 598 ◽  
pp. 8-12
Author(s):  
K.R. Phaneesh ◽  
Anirudh Bhat ◽  
Gautam Mukherjee ◽  
Kishore T. Kashyap

Large scale Potts model Monte Carlo simulation was carried on 3-dimensional square lattices of 1003 and 2003 sizes using the Metropolis algorithm to study grain growth behavior. Simulations were carried out to investigate both growth kinetics as well as the Zener limit in two-phase polycrystals inhibited in growth by second phase particles of single-voxel size. Initially the matrices were run to 10,000 Monte Carlo steps (MCS) to check the growth kinetics in both single phase and two-phase poly-crystals. Grain growth exponent values obtained as a result have shown to be highest (~ 0.4) for mono-phase materials while the value decreases with addition of second phase particles. Subsequently the matrices were run to stagnation in the presence of second phase particles of volume fractions ranging from 0.001to 0.1. Results obtained have shown a cube root dependence of the limiting grain size over the particle volume fraction thus reinforcing earlier 3D simulation efforts. It was observed that there was not much difference in the values of either growth kinetics or the Zener limit between 1003 and 2003 sized matrices, although the results improved mildly with size.


2007 ◽  
Vol 558-559 ◽  
pp. 1177-1181 ◽  
Author(s):  
Philippe Schaffnit ◽  
Markus Apel ◽  
Ingo Steinbach

The kinetics and topology of ideal grain growth were simulated using the phase-field model. Large scale phase-field simulations were carried out where ten thousands grains evolved into a few hundreds without allowing coalescence of grains. The implementation was first validated in two-dimensions by checking the conformance with square-root evolution of the average grain size and the von Neumann-Mullins law. Afterwards three-dimensional simulations were performed which also showed fair agreement with the law describing the evolution of the mean grain size against time and with the results of S. Hilgenfeld et al. in 'An Accurate von Neumann's Law for Three-Dimensional Foams', Phys. Rev. Letters, 86(12)/2685, March 2001. Finally the steady state grain size distribution was investigated and compared to the Hillert theory.


2016 ◽  
Vol 2016.29 (0) ◽  
pp. 4_221
Author(s):  
Eisuke MIYOSHI ◽  
Tomohiro TAKAKI ◽  
Shinji SAKANE ◽  
Munekazu OHNO ◽  
Yasushi SHIBUTA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document