217 Fatigue Characteristics of Shape Memory Alloy Thin Films

2000 ◽  
Vol 005.1 (0) ◽  
pp. 73-74
Author(s):  
Koji OKANO ◽  
Tetsuya YAGI ◽  
Hitoshi TAKAGI ◽  
Hiroaki MISAWA ◽  
Shigeki MATSUO ◽  
...  
2008 ◽  
Vol 202 (13) ◽  
pp. 3115-3120 ◽  
Author(s):  
A.J. Muir Wood ◽  
S. Sanjabi ◽  
Y.Q. Fu ◽  
Z.H. Barber ◽  
T.W. Clyne

1999 ◽  
Vol 342 (1-2) ◽  
pp. 67-73 ◽  
Author(s):  
Florent Goldberg ◽  
Émile J. Knystautas

2017 ◽  
Vol 50 (45) ◽  
pp. 455006 ◽  
Author(s):  
V A Chernenko ◽  
I R Aseguinolaza ◽  
V Golub ◽  
O Y Salyuk ◽  
J M Barandiarán

2021 ◽  
Vol 736 ◽  
pp. 138906
Author(s):  
Zenglu Song ◽  
Xiao Tang ◽  
Xiang Chen ◽  
Tao Fu ◽  
Huanping Zheng ◽  
...  

2004 ◽  
Vol 19 (10) ◽  
pp. 2822-2833 ◽  
Author(s):  
Bo-Kuai Lai ◽  
H. Kahn ◽  
S.M. Phillips ◽  
Z. Akase ◽  
A.H. Heuer

Phase transformations in near-equiatomic TiNi shape memory alloy thin films were studied, and the phase fraction evolutions were quantitatively correlated to the stress and resistivity of the films. TiNi thin films with compositions of 50.1, 51.1, and 51.7 at.% Ti all exhibited transformation temperatures between 65 and 100 °C, low residual stresses at room temperature (RT), and high recoverable stresses, thus making them suitable for microactuators in microelectromechanical systems. Low residual stresses at RT, less than 50 MPa, can be obtained even when only a small quantity of martensite, less than 30%, is present. Phase fraction evolution during complete thermal cycles (heating and cooling) was studied using elevated temperature x-ray diffraction, combined with quantitative Rietveld analysis. R-phase always appeared in these near-equiatomic TiNi thin films during cooling but did not have a noticeable effect on the stress–temperature hysteresis curves, which mainly depend on the phase fraction evolution of martensite. On the other hand, the occurrence of R-phase determined the variation of film resistivity. Martensite, austenite, and R-phase coexisting within a single grain were observed using transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document