316 Factors of Early Fracture in Room Temperature Tensile Tests for Friction Stir Welding Joints of a 7075 Aluminum Alloy

2012 ◽  
Vol 2012.50 (0) ◽  
pp. 31601-31602
Author(s):  
Tsutomu ITO ◽  
Yoshinobu MOTOHASHI ◽  
Goroh ITOH ◽  
Satoshi HIRANO
2015 ◽  
Vol 63 (2) ◽  
pp. 475-478
Author(s):  
I. Küçükrendeci

Abstract In the study, the mechanical and microstructural properties of friction stir welded EN AW-6060 Aluminum Alloy plates were investigated. The friction stir welding (FSW) was conducted at tool rotational speeds of 900, 1250, and 1500 rpm and at welding speeds of 100, 150 and 180 mm/min. The effect of the tool rotational and welding speeds such properties was studied. The mechanical properties of the joints were evaluated by means of micro-hardness (HV) and tensile tests at room temperature. The tensile properties of the friction stir welded tensile specimens depend significantly on both the tool rotational and welding speeds. The microstructural evolution of the weld zone was analysed by optical observations of the weld zones


2021 ◽  
pp. 129872
Author(s):  
Wenquan Wang ◽  
Suyu Wang ◽  
Xinge Zhang ◽  
Yuxin Xu ◽  
Yingtao Tian ◽  
...  

2014 ◽  
Vol 496-500 ◽  
pp. 110-113
Author(s):  
Dong Gao Chen ◽  
Jin He Liu ◽  
Zhi Hua Ma ◽  
Wu Lin Yang

The7A05 aluminum alloy of the 10mm thickness was welded by the friction stir welding. The microstructure and mechanical Properties of the welded joint was researched by the optical microscope, etc. The results showed: the microstructure of the weld nugget zone and the thermal mechanically affected zone were refined as the welding speed increasing when the rotate speed is constant. As the welding speed increasing the strength of extension of the welded joint is increasing at first and then stable basically. but the yield strength had no obvious change.


2020 ◽  
Vol 1003 ◽  
pp. 37-46
Author(s):  
Hao Zhu ◽  
Shao Kang Dong ◽  
Ze Ming Ma ◽  
Jun Wang

In this work, the microhardness of 7075 aluminum alloy friction stir welding (FSW) joint was measured by a micro vickers hardness tester, the microstructure of the joints was characterised by microscope, the precipitated phases among the welding nugget zone (WNZ), thermal mechanical affected zone (TMAZ), heat affected zone (HAZ) were affirmed by X-ray diffractometer (XRD) and the lattice fringe of transmission electron microscopy (TEM) high resolution image. Based on this, the precipition behavior of precipitated phases was studied. The results show that the microhardness distribution of the 7075 aluminium alloy FSW joints is heterogeneous in comparison with the base metal (BM). The precipitates in the joint mainly include MgZn rod shape and AlCuMg in elliptical shape. In the WNZ, the main precipitate is AlCuMg, and the fine grain strengthening effect is better, so the microhardness in this zone is relatively high. In the TMAZ, the quantity of AlCuMg decreased while the MgZn2 increased relatively in comparison with the WNZ. At the same time, the effect of the fine grain strengthening was weakened, though the strain hardening increased. Therefore, the microhardness in the TMAZ still decreased. In the HAZ, the quantity of MgZn2 increased furtherly, and there is no strain hardening and fine grain strengthening, so the microhardness of the HAZ was the lowest among the FSW joints. Besides, through comparative tests, the optimal process parameters of friction stir welding of 7075 aluminum alloy were obtained.


2010 ◽  
Vol 2010.48 (0) ◽  
pp. 65-66
Author(s):  
Tsutomu ITO ◽  
Xiaoyong YUN ◽  
Alexandre GOLOBOLODKO ◽  
Yoshinobu MOTOHASHI ◽  
Goroh ITOH ◽  
...  

2006 ◽  
Vol 62 (3) ◽  
pp. 478-488 ◽  
Author(s):  
Nobuyasu HAGISAWA ◽  
Ichiro OKURA ◽  
Masayuki HANAZAKI ◽  
Hiroshi ONISHI ◽  
Masanori SATO

2011 ◽  
Vol 409 ◽  
pp. 281-286
Author(s):  
Yutaka Matsuda ◽  
Goroh Itoh ◽  
Yoshinobu Motohashi

Friction stir processing (FSP) is a method for controlling the microstructure that has been proposed by applying friction stir welding, FSW. In this study, microstructure and mechanical properties of a 7075 aluminum alloy subjected to multi-pass FSP, MP-FSP, are assessed to obtain fundamental knowledge for improving the plasticity of aluminum alloys. The MP-FSP has been applied to 7075 alloy plates with T6 and O tempers, and microstructural characterization has been made by means of optical and scanning electron microscopies together with EDX and EBSD analyses, while mechanical properties were measured by means of micro hardness and tensile tests at room and high temperatures. From microstructural observation, a new zone, PBZ, has been discovered between stir zones, SZs. The PBZ is composed of two types of (fine and coarse) grains, where the coarse grain contains many sub-grains. Hardness in PBZ is intermediate between that in BM and SZ both in T6 and O specimens; hardness generally decreases and increases in T6 and O specimens, respectively, by MP-FSP. In accord to the hardness change, strength at room temperature is decreased by MP-FSP in T6 specimen, and increased in O specimen. Elongation at 773K is increased both in T6 and O specimens because of superplastic deformation. However, local elongation is smaller in PBZ than in SZ, which can be attributed to the microstructural change by the deformation: grain shape remains equiaxed in SZ while it becomes elongated in the tensile direction in PBZ.


2010 ◽  
Vol 2010.6 (0) ◽  
pp. 379-380
Author(s):  
Tsutomu ITO ◽  
Xiaoyong YUN ◽  
Alexandre GOLOBORODKO ◽  
Yoshinobu MOTOHAHSI ◽  
Goroh ITOH ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document