Study on the Precipitation Behavior of Precipitates of 7075 Aluminum Alloy Friction Stir Welding Joint

2020 ◽  
Vol 1003 ◽  
pp. 37-46
Author(s):  
Hao Zhu ◽  
Shao Kang Dong ◽  
Ze Ming Ma ◽  
Jun Wang

In this work, the microhardness of 7075 aluminum alloy friction stir welding (FSW) joint was measured by a micro vickers hardness tester, the microstructure of the joints was characterised by microscope, the precipitated phases among the welding nugget zone (WNZ), thermal mechanical affected zone (TMAZ), heat affected zone (HAZ) were affirmed by X-ray diffractometer (XRD) and the lattice fringe of transmission electron microscopy (TEM) high resolution image. Based on this, the precipition behavior of precipitated phases was studied. The results show that the microhardness distribution of the 7075 aluminium alloy FSW joints is heterogeneous in comparison with the base metal (BM). The precipitates in the joint mainly include MgZn rod shape and AlCuMg in elliptical shape. In the WNZ, the main precipitate is AlCuMg, and the fine grain strengthening effect is better, so the microhardness in this zone is relatively high. In the TMAZ, the quantity of AlCuMg decreased while the MgZn2 increased relatively in comparison with the WNZ. At the same time, the effect of the fine grain strengthening was weakened, though the strain hardening increased. Therefore, the microhardness in the TMAZ still decreased. In the HAZ, the quantity of MgZn2 increased furtherly, and there is no strain hardening and fine grain strengthening, so the microhardness of the HAZ was the lowest among the FSW joints. Besides, through comparative tests, the optimal process parameters of friction stir welding of 7075 aluminum alloy were obtained.

2010 ◽  
Vol 2010.48 (0) ◽  
pp. 65-66
Author(s):  
Tsutomu ITO ◽  
Xiaoyong YUN ◽  
Alexandre GOLOBOLODKO ◽  
Yoshinobu MOTOHASHI ◽  
Goroh ITOH ◽  
...  

2016 ◽  
Vol 35 (8) ◽  
pp. 843-851 ◽  
Author(s):  
Shude Ji ◽  
Xiangchen Meng ◽  
Jingwei Xing ◽  
Lin Ma ◽  
Shuangsheng Gao

AbstractVertical compensation friction stir welding (VCFSW) was proposed in order to solve the adverse effect caused by a big gap at the interface between two welded workpieces. VCFSW was successfully applied to weld 6061-T6 aluminum alloy with the thickness of 4 mm, while 2024-T4 aluminum alloy was selected as a rational compensation material. The results show that VCFSW is difficult to get a sound joint when the width of strip is no less than 1.5 mm. Decreasing the welding speed is beneficial to break compensation strip into pieces and then get higher quality joint. When the width of strip is 1 mm, the tensile strength and elongation of joint at the welding speed of 50 mm/min and rotational velocity of 1,800 rpm reach the maximum values of 203 MPa and 5.2%, respectively. Moreover, the addition of 2024-T4 alloy plays a strengthening effect on weld zone (WZ) of VCFSW joint. The fracture surface morphology of joint consisting of amounts of dimples exhibits ductile fracture.


2011 ◽  
Vol 117-119 ◽  
pp. 1621-1624 ◽  
Author(s):  
Zheng Hua Guo ◽  
Gang Yao Zhao ◽  
Li Ming Ke ◽  
Li Xing ◽  
Shun Feng Zhu

A 3D elastic-plastic and coupled thermo-mechanical FE model for friction stir welding(FSW) of 7075 aluminum alloy plate was developed based on the dynamic explicit code ABAQUS/explicit, then the FSW process of 7075 aluminum alloy plate was simulated and the materials flow behavior was analyzed. The results show that in the horizontal direction of the plate, two patterns of materials migration are produced: (1) the material rotates with the tool and finally deposits the tentative cavity behind the pin; (2) the material transfers in the mode of laminar flow. Furthermore, the streamlines of material in advanced side (AS) are bent along the reverse welding direction. After bypassing the pin, the material of retreating side (RS) moves backward it, and extends to AS.


Author(s):  
Raza Moshwan ◽  
Sahifulddin M. Rahmat ◽  
Farazila Yusof ◽  
Mohsen A. Hassan ◽  
Mohd Hamdi ◽  
...  

2018 ◽  
Vol 56 (1) ◽  
pp. 39 ◽  
Author(s):  
Tran Hung Tra

Aluminum alloy 6063-T5 plates were joined by friction stir welding technique. The fatigue crack growth (FCG) in the thermo-mechanical affected zone (TMAZ) and in the heat affected zone (HAZ) of the welding was examined at 200oC. Although the grain microstructure of the TMAZ was significantly refined in comparison with that of BM, the FCG rate in TMAZ and base metal was shifted a comparable amount when the test temperature was elevated from room temperature to 200oC. In the metallurgical view, the FCG rate in the fine grain TMAZ was higher than that in coarse grain HAZ and base metal site.


Sign in / Sign up

Export Citation Format

Share Document