scholarly journals Mechanical and microstructural properties of EN AW-6060 aluminum alloy joints produced by friction stir welding

2015 ◽  
Vol 63 (2) ◽  
pp. 475-478
Author(s):  
I. Küçükrendeci

Abstract In the study, the mechanical and microstructural properties of friction stir welded EN AW-6060 Aluminum Alloy plates were investigated. The friction stir welding (FSW) was conducted at tool rotational speeds of 900, 1250, and 1500 rpm and at welding speeds of 100, 150 and 180 mm/min. The effect of the tool rotational and welding speeds such properties was studied. The mechanical properties of the joints were evaluated by means of micro-hardness (HV) and tensile tests at room temperature. The tensile properties of the friction stir welded tensile specimens depend significantly on both the tool rotational and welding speeds. The microstructural evolution of the weld zone was analysed by optical observations of the weld zones

2006 ◽  
Vol 519-521 ◽  
pp. 1163-1168 ◽  
Author(s):  
Pasquale Cavaliere ◽  
Antonio Squillace

The effect of processing parameters on mechanical and microstructural properties of dissimilar AA6082-AA2024 joints produced by Friction Stir Welding was analysed in the present study. Different samples were produced by employing a fixed rotating speeds of 1600 RPM and by using the advancing speeds of the tool of 80 and 115 mm/min. All the welds were produced in direction perpendicular to the rolling one for both the alloys and by changing, for all the processing conditions, the alloy positioned on the advancing side of the tool. The mechanical properties of the joints were evaluated by room temperature tensile tests. Fatigue tests on the welds were carried out by using a resonant electro-mechanical testing machine under constant loading control up to 250 Hz sine wave loading. The fatigue tests were conducted in the axial total stress-amplitude control mode with R=smin/smax=0.1. The microstructural evolution of the material was analysed by optical observations of the welds cross sections and SEM observations of the fracture surfaces.


2014 ◽  
Vol 592-594 ◽  
pp. 250-254 ◽  
Author(s):  
Sabitha Jannet ◽  
P. Koshy Mathews

The effect of processing parameters on the mechanical and microstructural properties of dissimilar AA6061 t6–AA5083 0 joints produced by friction stir welding was studied. Different samples were produced by varying the advancing speeds of the tool as 20 and 40 mm/min and by varying the alloy positioned on the advancing side of the tool. In the various trials the rotating speed is varied from 600 to 900 RPM. All the welds were produced perpendicular to the rolling direction for both the alloys. Micro hardness (HV) and tensile tests performed at room temperature were used to evaluate the mechanical properties of the joints. Various tests were performed on the joints previously subjected to ageing. In order to analyze the micro structural evolution of the material, the welds’ zones were observed optically.


2011 ◽  
Vol 418-420 ◽  
pp. 822-826
Author(s):  
Jia Feng Li ◽  
Xiao Gang Chen ◽  
Yong Gang Xu

The aim of present work is to investigate the mechanical and microstructural properties of dissimilar ADC12 and 6061 aluminium alloy joints produced by friction stir welding (FSW). The microstructure of joints has been observed by employing optical microscope. Furthermore, the welded joints have been tested under tension at room temperature in order to analyse their mechanical properties. At last, the scanning electron microscope (SEM) was employed to observe the specimens’ fracture morphology.


1998 ◽  
Vol 4 (S2) ◽  
pp. 530-531
Author(s):  
R. D. Flores ◽  
L. E. Murr ◽  
E. A. Trillo

Although friction-stir welding has been developing as a viable industrial joining process over the past decade, only little attention has been given to the elucidation of associated microstructures. We have recently produced welds of copper to 6061 aluminum alloy using the technique illustrated in Fig. 1. In this process, a steel tool rod (0.6 cm diameter) or head-pin (HP) traverses the seam of 0.64 cm thick plates of copper butted against 6061-T6 aluminum at a rate (T in Fig. 1) of 1 mm/s; and rotating at a speed (R in Fig. 1) of 650 rpm (Fig. 1). A rather remarkable welding of these two materials results at temperatures measured to be around 400°C for 6061-T6 aluminum welded to itself. Consequently, the metals are stirred into one another by extreme plastic deformation which universally seems to involve dynamic recrystallization in the actual weld zone. There is no melting.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 366
Author(s):  
Mariyappan. K ◽  
Praveen K ◽  
Suresh Kumar.S ◽  
Kadambanathan. K ◽  
Rajamanickam. S ◽  
...  

The aim of this study is to show the feasibility for butt joining dissimilar brass to austenitic stainless steel plates by Friction Stir Welding. In this study, the limited FSW parameters were employed. Metallurgical characterization like Scanning Electron Microscopy and Mechanical characterization like tensile test, Micro hardness is done to investigate the joint performance and the weld zone of dissimilar brass/steel joints. The tensile strength and micro hardness values are 20 MPa, 122 MPa and 157 MPa and 175 Hv, 196 Hv and 199 Hv for the table traverse speeds of 40 mm/min, 50 mm/min and 60 mm/min respectively. The tensile strength of dissimilar brass/steel joint was found to be lower than that of parent metals. The defect free brass/steel interfaces were seen by Scanning Electron Microscopy. It was illustrated that the stirred zone exposed to two main structures namely, recrystallized grains of brass and intercalated swirl and vortex-like structure which can be characterized both the recrystallized brass grains and steel layers. This work is one of the preliminary studies on the detailed examinations of the dissimilar brass/steel joined by Friction stir welding. 


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
R. Suryanarayanan ◽  
V. G. Sridhar ◽  
L. Natrayan ◽  
S. Kaliappan ◽  
Anjibabu Merneedi ◽  
...  

Friction stir welding is a solid-state welding method that produces joints with superior mechanical and metallurgical properties. However, the negative effects of the thermal cycle during welding dent the mechanical performance of the weld joint. Hence, in this research study, the joining of aluminum tailor welded blanks by friction stir welding is carried out in underwater conditions by varying the welding parameters. The tensile tests revealed that the underwater welded samples showed better results when compared to the air welded samples. Maximum tensile strength of 229.83 MPa was obtained at 1000 rpm, 36 mm/min. The improved tensile strength of the underwater welded samples was credited to the suppression of the precipitation of the secondary precipitates due to the cooling action provided by the water. The lowest hardness of 72 HV was obtained at the edge of the stir zone which indicated the weakest region in the weld zone.


Sign in / Sign up

Export Citation Format

Share Document