Multi-scale topology optimization method of anisotropic acoustic metamaterials using propagating direction determination based on high-frequency homogenization method

2020 ◽  
Vol 2020.30 (0) ◽  
pp. 2108
Author(s):  
Hiromasa KURIOKA ◽  
Yuki NOGUCHI ◽  
Kazuhiro IZUI ◽  
Takayuki YAMADA ◽  
Shinji NISHIWAKI
Author(s):  
Atsuro Iga ◽  
Shinji Nishiwaki ◽  
Kazuhiro Izui ◽  
Masataka Yoshimura

In this paper, a topology optimization method is constructed for thermal problems with generic heat transfer boundaries in a fixed design domain that includes design-dependent effects. First, the topology optimization method for thermal problems is briefly explained using a homogenization method for the relaxation of the design domain, where a continuous material distribution is assumed, to suppress numerical instabilities and checkerboards. Next, a method is developed for handling heat transfer boundaries between material and void regions that appear in the fixed design domain and move during the optimization process, using the Heaviside function as a function of node-based material density to extract the boundaries of the target structure being optimized so that the heat transfer boundary conditions can be set. Shape dependencies concerning heat transfer coefficients are also considered in the topology optimization scheme. The optimization problem is formulated using the concept of total potential energy and an optimization algorithm is constructed using the Finite Element Method and Sequential Linear Programming. Finally, several numerical examples are presented to confirm the usefulness of the proposed method.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 774
Author(s):  
Haitao Luo ◽  
Rong Chen ◽  
Siwei Guo ◽  
Jia Fu

At present, hard coating structures are widely studied as a new passive damping method. Generally, the hard coating material is completely covered on the surface of the thin-walled structure, but the local coverage cannot only achieve better vibration reduction effect, but also save the material and processing costs. In this paper, a topology optimization method for hard coated composite plates is proposed to maximize the modal loss factors. The finite element dynamic model of hard coating composite plate is established. The topology optimization model is established with the energy ratio of hard coating layer to base layer as the objective function and the amount of damping material as the constraint condition. The sensitivity expression of the objective function to the design variables is derived, and the iteration of the design variables is realized by the Method of Moving Asymptote (MMA). Several numerical examples are provided to demonstrate that this method can obtain the optimal layout of damping materials for hard coating composite plates. The results show that the damping materials are mainly distributed in the area where the stored modal strain energy is large, which is consistent with the traditional design method. Finally, based on the numerical results, the experimental study of local hard coating composites plate is carried out. The results show that the topology optimization method can significantly reduce the frequency response amplitude while reducing the amount of damping materials, which shows the feasibility and effectiveness of the method.


Author(s):  
Akihiro Takezawa ◽  
Shinji Nishiwaki ◽  
Kazuhiro Izui ◽  
Masataka Yoshimura

This paper discuses a new topology optimization method using frame elements for the design of mechanical structures at the conceptual design phase. The optimal configurations are determined by maximizing multiple eigen-frequencies in order to obtain the most stable structures for dynamic problems. The optimization problem is formulated using frame elements having ellipsoidal cross-sections, as the simplest case. Construction of the optimization procedure is based on CONLIN and the complementary strain energy concept. Finally, several examples are presented to confirm that the proposed method is useful for the topology optimization method discussed here.


Sign in / Sign up

Export Citation Format

Share Document