G602 Numerical Analyses on Liquid-Metal MHD Flow in Sudden Expansion : Sudden Expansion in Direction perpendicular to Applied Magnetic Field

2012 ◽  
Vol 2012 (0) ◽  
pp. 527-528
Author(s):  
Hiroshige KUMAMARU ◽  
Kazuhiro ITOH ◽  
Yuji SHIMOGONYA
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Mihails Birjukovs ◽  
Valters Dzelme ◽  
Andris Jakovics ◽  
Knud Thomsen ◽  
Pavel Trtik

2011 ◽  
Vol 674 ◽  
pp. 132-162 ◽  
Author(s):  
C. MISTRANGELO

A numerical study has been carried out to analyse liquid metal flows in a sudden expansion of electrically conducting rectangular ducts under the influence of an imposed uniform magnetic field. Separation phenomena are investigated by selecting a reference Reynolds number and by increasing progressively the applied magnetic field. The magnetic effects leading to the reduction of the size of separation zones that form behind the cross-section enlargement are studied by considering modifications of flow topology, streamline patterns and electric current density distribution. In the range of parameters investigated, the magnetohydrodynamic flow undergoes substantial transitions from a hydrodynamic-like flow to one dominated by electromagnetic forces, where the influence of inertia and viscous forces is confined to thin internal layers aligned with the magnetic field and to boundary layers that form along the walls. Scaling laws describing the reattachment length and the pressure drop in the sudden expansion are derived for intense magnetic fields.


1990 ◽  
Vol 216 ◽  
pp. 161-191 ◽  
Author(s):  
A. Sterl

To design self-cooled liquid metal blankets for fusion reactors, one must know about the behaviour of MHD flows at high Hartmann numbers. In this work, finite difference codes are used to investigate the influence of Hartmann number M, interaction parameter N, wall conductance ratio c, and changing magnetic field, respectively, on the flow.As liquid-metal MHD flows are characterized by thin boundary layers, resolution of these layers is the limiting issue. Hartmann numbers up to 103 are reached in the two-dimensional case of fully developed flow, while in three-dimensional flows the limit is 102. However, the calculations reveal the main features of MHD flows at large M. They are governed by electric currents induced in the fluid. Knowing the paths of these currents makes it possible to predict the flow structure.Results are shown for two-dimensional flows in a square duct at different Hartmann numbers and wall conductivities. While the Hartmann number governs the thickness of the boundary layers, the wall conductivities are responsible for the pressure losses and the structure of the flows. The most distinct feature is the side layers where the velocities can exceed those at the centre by orders of magnitude.The three-dimensional results are also for a square duct. The main interest here is to investigate the redistribution of the fluid in a region where the magnetic field changes. Large axial currents are induced leading to the ‘M-shaped’ velocity profiles characteristic of MHD flow. So-called Flow Channel Inserts (FCI), of great interest in blanket design, are investigated. They serve to decouple the load carrying wall from the currents in the fluid. The calculations show that the FCI is indeed a suitable measure to reduce the pressure losses in the blanket.


2014 ◽  
Vol 742 ◽  
pp. 446-465 ◽  
Author(s):  
John R. Rhoads ◽  
Eric M. Edlund ◽  
Hantao Ji

AbstractResults from a free-surface magnetohydrodynamic (MHD) flow experiment are presented detailing the modification of vortices in the wake of a circular cylinder with its axis parallel to the applied magnetic field. Experiments were performed at Reynolds numbers of the order of ${\mathit{Re}}\sim 10^4$ as the interaction parameter ${\mathit{N}}$, representing the ratio of electromagnetic forces to inertial forces, was increased through unity. The von Kármán vortex street in the wake of the cylinder was observed by simultaneously sampling the gradient of the induced electric potential, $ \boldsymbol {\nabla }{\phi }$, at 16 cross-stream locations as a proxy for the streamwise fluid velocity. An ensemble of vortex velocity profiles was measured as a function of the applied magnetic field strength. Results indicate a significant change in the circulation of vortices and the deviations from the average profile as ${\mathit{N}}$ was increased. By sampling the fluctuations in $\boldsymbol {\nabla }{\phi }$ at three locations in the wake, the decay of the vortices was examined and the effective viscosity was found to decrease as ${\mathit{N}}^{-0.49 \pm 0.04}$. Using temperature as a passive tracer, qualitative observations were made with an infrared (IR) camera that showed significant changes in the wake, including the absence of small-scale structures at high magnetic field strengths. Collectively, the results suggest that the reduction in effective viscosity was due to the suppression of the small-scale eddies by the magnetic field. The slope of the power spectrum was observed to change from a $k^{-1.8}$ power law at low ${\mathit{N}}$ to a $k^{-3.5}$ power law for ${\mathit{N}}> 1$. Together, these results suggest the flow smoothly transitioned from a hydrodynamic state to a magnetohydrodynamic regime over the range of $0 < {\mathit{N}}< 1$.


Sign in / Sign up

Export Citation Format

Share Document