Effects of magnetic field on the turbulent wake of a cylinder in free-surface magnetohydrodynamic channel flow

2014 ◽  
Vol 742 ◽  
pp. 446-465 ◽  
Author(s):  
John R. Rhoads ◽  
Eric M. Edlund ◽  
Hantao Ji

AbstractResults from a free-surface magnetohydrodynamic (MHD) flow experiment are presented detailing the modification of vortices in the wake of a circular cylinder with its axis parallel to the applied magnetic field. Experiments were performed at Reynolds numbers of the order of ${\mathit{Re}}\sim 10^4$ as the interaction parameter ${\mathit{N}}$, representing the ratio of electromagnetic forces to inertial forces, was increased through unity. The von Kármán vortex street in the wake of the cylinder was observed by simultaneously sampling the gradient of the induced electric potential, $ \boldsymbol {\nabla }{\phi }$, at 16 cross-stream locations as a proxy for the streamwise fluid velocity. An ensemble of vortex velocity profiles was measured as a function of the applied magnetic field strength. Results indicate a significant change in the circulation of vortices and the deviations from the average profile as ${\mathit{N}}$ was increased. By sampling the fluctuations in $\boldsymbol {\nabla }{\phi }$ at three locations in the wake, the decay of the vortices was examined and the effective viscosity was found to decrease as ${\mathit{N}}^{-0.49 \pm 0.04}$. Using temperature as a passive tracer, qualitative observations were made with an infrared (IR) camera that showed significant changes in the wake, including the absence of small-scale structures at high magnetic field strengths. Collectively, the results suggest that the reduction in effective viscosity was due to the suppression of the small-scale eddies by the magnetic field. The slope of the power spectrum was observed to change from a $k^{-1.8}$ power law at low ${\mathit{N}}$ to a $k^{-3.5}$ power law for ${\mathit{N}}> 1$. Together, these results suggest the flow smoothly transitioned from a hydrodynamic state to a magnetohydrodynamic regime over the range of $0 < {\mathit{N}}< 1$.

Author(s):  
Jannette B. Frandsen

In this contribution, the energy from steep waves is extracted from liquid sloshing in tanks. The aim is to develop a damping device to control structural vibrations in for example free standing towers, offshore platforms and other engineering structures. The focus of the work is to add further energy to the liquid sloshing motions through a magnetic field. Without the magnetic field, the damping device may be too heavy and thus impractical. We seek to develop light weight environmental friendly dampers. Liquid sloshing in tanks exhibit complicated free surface behavior, especially when the waves becomes steep and break. As a result, mode interactions occur which make it difficult for practitioners to know the performance of the tuned liquid dampers. It is also known that wave breaking in tanks is the source which provide maximum energy. It is this situation, we wish to exploit further in a magnetic field. Herein, small scale physical tests are undertaken in a square tank. The parametric study includes a variation of liquid, liquid depth, magnetic strength, forcing frequency and forcing direction. The preliminary results show that a magnetic field can suppress the free surface significantly, and thus provide additional energy, potentially resulting in smaller damping devices.


2017 ◽  
Vol 14 (3) ◽  
pp. 193-199 ◽  
Author(s):  
Meysam Amini ◽  
Esmaeil GhasemiKafrudi ◽  
Mohammad Reza Habibi ◽  
Azin Ahmadi ◽  
Akram HosseinNia

Purpose Due to the extensive industrial applications of stagnation flow problems, the present work aims to investigate the magnetohydrodynamics (MHD) flow and heat transfer of a magnetite nanofluid (here Fe3O4–water nanofluid) impinging a flat porous plate under the effects of a non-uniform magnetic field and chemical reaction with variable reaction rate. Design/methodology/approach Similarity transformations are applied to reduce the governing partial differential equations with boundary conditions into a system of ordinary differential equations over a semi-infinite domain. The modified fourth-order Runge–Kutta method with the shooting technique which is developed for unbounded domains is conducted to give approximate solutions of the problem, which are then verified by results of other researchers, showing very good agreements. Findings The effects of the volume fraction of nanoparticles, permeability, magnetic field, chemical reaction and Schmidt number on velocity, temperature and concentration fields are examined and graphically illustrated. It was found that fluid velocity and temperature fields are affected strongly by the types of nanoparticles. Moreover, magnetic field and radiation have strong effects on velocity and temperature fields, fluid velocity increases and thickness of the velocity boundary layer decreases as magnetic parameter M increases. The results also showed that the thickness of the concentration boundary layer decreases with an increase in the Schmidt number, as well as an increase in the chemical reaction coefficient. Research limitations/implications The thermophysical properties of the magnetite nanofluid (Fe3O4–water nanofluid) in different conditions should be checked. Practical implications Stagnation flow of viscous fluid is important due to its vast industrial applications, such as the flows over the tips of rockets, aircrafts, submarines and oil ships. Moreover, nanofluid, a liquid containing a dispersion of sub-micronic solid particles (nanoparticles) with typical length of the order of 1-50 nm, showed abnormal convective heat transfer enhancement, which is remarkable. Originality/value The major novelty of the present work corresponds to utilization of a magnetite nanofluid (Fe3O4–water nanofluid) in a stagnation flow influenced by chemical reaction and magnetic field. It should be noted that in addition to a variable chemical reaction, the permeability is non-uniform, while the imposed magnetic field also varies along the sheet. These, all, make the present work rather original.


1981 ◽  
Vol 6 ◽  
Author(s):  
K. L. Erickson ◽  
D. R. Fortney

ABSTRACTAnalyses have been completed which provide guidance for conducting radionuclide migration field experiments. Characterization of nonwelded tuffs and laboratory experiments defining dominant chemical phenomena were used to develop a model for describing migration in fractured porous rock. Criteria for obtaining optimum experimental conditions were developed in terms of the key variables dominating migration in a given rock type, namely the fracture aperture, distribution coefficient, and average fluid velocity. For simple dissolved species, which are reversibly sorbed, variations in fracture aperture and fluid velocity affect experiment results much more than variations in distribution coefficient. Therefore, the experiment should be designed to optimize hydrogeologic conditions rather than sorption properties.


2018 ◽  
Vol 32 (32) ◽  
pp. 1850360
Author(s):  
F. T. Dias ◽  
V. N. Vieira ◽  
C. P. Oliveira ◽  
D. L. Silva ◽  
F. Mesquita ◽  
...  

We have studied the superconducting transition and the magnetoconductivity fluctuations in the polycrystalline Y3Ba5Cu8O[Formula: see text] (Y358) superconductor under magnetic fields upto 1 T. A two-step superconducting transition could be observed as a consequence of the granular structure of the sample, which is strongly affected by the applied magnetic field. Gaussian and genuine critical 3D-XY-E fluctuation regimes were identified. A critical scaling regime beyond 3D-XY was identified for magnetic fields upto 0.25 T, corresponding to the averaged exponent 0.19 and suggesting the occurrence of the weak first-order character of the superconducting transition. In the approximation to the zero resistance a power law regime could be observed, corresponding to the averaged exponent 2.37, which are smaller than previously reported for the Y358 system. Our results are discussed in terms of the Y358 and YBa2Cu3O[Formula: see text](Y123) results in the literature.


Author(s):  
Falana Ayodeji ◽  
Babatope. O Pele

The problem of laminar boundary layer flow of power-law fluid over a continuous moving surface in the presence of a transverse magnetic field with velocity slip was investigated. The governing partial differential equations for the flow and heat transfer were transformed into non-linear ordinary differential equations using the similarity method. These equations were solved numerically by applying the fourth-order Runge-Kutta method with a shooting technique. The solution is found to be dependent on various parameters such as power-law index, magnetic field parameter, suction, and injection parameters. The effect of various flow parameters in the form of dimensionless quantities on the flow field is discussed and graphically presented. It was observed that an increase in the magnetic property results to a decrease flow of fluid velocity and also, an increase in the Prandtl number results to an increase in the rate of heat transfer.


2012 ◽  
Vol 485 ◽  
pp. 293-296
Author(s):  
Zhi Zheng Wu ◽  
Mei Liu

Recently, magnetic fluid deformable mirrors (MFDMs) were proposed as a novel type of wavefront correctors for adaptice optics (AO) systems, which offer cost and performance advantages over existing wavefront correctors. These mirrors are developed by coating the free surface of a magnetic fluid with a thin reflective film of nano-particles. The reflective surface of the mirrors can be deformed using a locally applied magnetic field and thus serves as a wavefront corrector. In this paper, the working principle of MFDMs is first presented, then the perspectives of MFDMs that will have to be addressed before they can be finally used practically in AO applications are discussed.


2018 ◽  
Vol 617 ◽  
pp. A50 ◽  
Author(s):  
Charalambos Kanella ◽  
Boris V. Gudiksen

Context. One candidate model for heating the solar corona is magnetic reconnection that embodies Ohmic dissipation of current sheets. When numerous small-scale magnetic reconnection events occur, then it is possible to heat the corona; if ever observed, these events would have been the speculated nanoflares. Aims. Because of the limitations of current instrumentation, nanoflares cannot be resolved. But their importance is evaluated via statistics by finding the power-law index of energy distribution. This method is however biased for technical and physical reasons. We aim to overcome limitations imposed by observations and statistical analysis. This way, we identify, and study these small-scale impulsive events. Methods. We employed a three-dimensional magnetohydrodynamic (3D MHD) simulation using the Bifrost code. We also employed a new technique to identify the evolution of 3D joule heating events in the corona. Then, we derived parameters describing the heating events in these locations, studied their geometrical properties and where they occurred with respect to the magnetic field. Results. We report on the identification of heating events. We obtain the distribution of duration, released energy, and volume. We also find weak power-law correlation between these parameters. In addition, we extract information about geometrical parameters of 2D slices of 3D events, and about the evolution of resolved joule heating compared to the total joule heating and magnetic energy in the corona. Furthermore, we identify relations between the location of heating events and the magnetic field. Conclusions. Even though the energy power index is less than 2, when classifying the energy release into three categories with respect to the energy release (pico-, nano-, and micro-events), we find that nano-events release 82% of the resolved energy. This percentage corresponds to an energy flux larger than that needed to heat the corona. Although no direct conclusions can be drawn, it seems that the most popular population among small-scale events is the one that contains nano-scale energetic events that are short lived with small spatial extend. Generally, the locations and size of heating events are affected by the magnitude of the magnetic field.


2019 ◽  
Vol 17 (03) ◽  
pp. 1850143
Author(s):  
Cansu Evcin ◽  
Ömür Uğur ◽  
Münevver Tezer-Sezgi̇n

The direct and optimal control solution of laminar fully developed, steady Magnetohydrodynamics (MHD) flow of an incompressible, electrically conducting power-law non-Newtonian fluid in a square duct is considered with the heat transfer. The fluid is subjected to an external uniform magnetic field as well as a constant pressure gradient. The apparent fluid viscosity is both a function of the unknown velocity and the flow index which makes the momentum equation nonlinear. Viscous and Joule dissipation terms are also included. The direct problem is solved by using Galerkin finite element method (FEM) with mixed finite elements and the control problem approach is the discretize-then-optimize procedure. The control formulations with the flow index parameter and the Hartmann number are given to regain the desired velocity profile and temperature isolines of the MHD flow.


Sign in / Sign up

Export Citation Format

Share Document