Analysis of cell traction forces based on the cell shape differences using traction force microscopy

2018 ◽  
Vol 2018.26 (0) ◽  
pp. 512
Author(s):  
Harunobu TATSUNO ◽  
Kazuaki NAGAYAMA
2017 ◽  
Vol 28 (14) ◽  
pp. 1825-1832 ◽  
Author(s):  
Laetitia Kurzawa ◽  
Benoit Vianay ◽  
Fabrice Senger ◽  
Timothée Vignaud ◽  
Laurent Blanchoin ◽  
...  

Mechanical forces are key regulators of cell and tissue physiology. The basic molecular mechanism of fiber contraction by the sliding of actin filament upon myosin leading to conformational change has been known for decades. The regulation of force generation at the level of the cell, however, is still far from elucidated. Indeed, the magnitude of cell traction forces on the underlying extracellular matrix in culture is almost impossible to predict or experimentally control. The considerable variability in measurements of cell-traction forces indicates that they may not be the optimal readout to properly characterize cell contractile state and that a significant part of the contractile energy is not transferred to cell anchorage but instead is involved in actin network dynamics. Here we discuss the experimental, numerical, and biological parameters that may be responsible for the variability in traction force production. We argue that limiting these sources of variability and investigating the dissipation of mechanical work that occurs with structural rearrangements and the disengagement of force transmission is key for further understanding of cell mechanics.


2018 ◽  
Author(s):  
Brian P. Griffin ◽  
Christopher J. Largaespada ◽  
Nicole A. Rinaldi ◽  
Christopher A. Lemmon

AbstractMany methods exist for quantifying cellular traction forces, including traction force microscopy and microfabricated post arrays. However, these methodologies have limitations, including a requirement to remove cells to determine undeflected particle locations and the inability to quantify forces of cells with low cytoskeletal stiffness, respectively. Here we present a novel method of traction force quantification that eliminates both of these limitations. Through the use of a hexagonal pattern of microcontact-printed protein spots, a novel computational algorithm, and thin surfaces of polydimethyl siloxane (PDMS) blends, we demonstrate a system that quantifies cellular forces on a homogeneous surface that is stable, easily manufactured, and can quantify forces without need for cellular removal.


PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e69850 ◽  
Author(s):  
Juan C. del Álamo ◽  
Ruedi Meili ◽  
Begoña Álvarez-González ◽  
Baldomero Alonso-Latorre ◽  
Effie Bastounis ◽  
...  

Author(s):  
Q. Peng ◽  
F. J. Vermolen ◽  
D. Weihs

AbstractThe phenomenological model for cell shape deformation and cell migration Chen (BMM 17:1429–1450, 2018), Vermolen and Gefen (BMM 12:301–323, 2012), is extended with the incorporation of cell traction forces and the evolution of cell equilibrium shapes as a result of cell differentiation. Plastic deformations of the extracellular matrix are modelled using morphoelasticity theory. The resulting partial differential differential equations are solved by the use of the finite element method. The paper treats various biological scenarios that entail cell migration and cell shape evolution. The experimental observations in Mak et al. (LC 13:340–348, 2013), where transmigration of cancer cells through narrow apertures is studied, are reproduced using a Monte Carlo framework.


Author(s):  
Steven Huth ◽  
Johannes W. Blumberg ◽  
Dimitri Probst ◽  
Jan Lammerding ◽  
Ulrich S. Schwarz ◽  
...  

AbstractMammalian cells have evolved complex mechanical connections to their microenvironment, including focal adhesion clusters that physically connect the cytoskeleton and the extracellular matrix. This mechanical link is also part of the cellular machinery to transduce, sense and respond to external forces. Although methods to measure cell attachment and cellular traction forces are well established, these are not capable of quantifying force transmission through the cell body to adhesion sites. We here present a novel approach to quantify intracellular force transmission by combining microneedle shearing at the apical cell surface with traction force microscopy at the basal cell surface. The change of traction forces exerted by fibroblasts to underlying polyacrylamide substrates as a response to a known shear force exerted with a calibrated microneedle reveals that cells redistribute forces dynamically under external shearing and during sequential rupture of their adhesion sites. Our quantitative results demonstrate a transition from dipolar to monopolar traction patterns, an inhomogeneous distribution of the external shear force to the adhesion sites as well as dynamical changes in force loading prior to and after the rupture of single adhesion sites. Our strategy of combining traction force microscopy with external force application opens new perspectives for future studies of force transmission and mechanotransduction in cells.


2021 ◽  
Vol 32 (18) ◽  
pp. 1737-1748
Author(s):  
Somanna Kollimada ◽  
Fabrice Senger ◽  
Timothée Vignaud ◽  
Manuel Théry ◽  
Laurent Blanchoin ◽  
...  

The endogenous content of proteins associated with force production and the resultant traction forces were quantified in the same cells using a new traction force-microscopy assay. Focal adhesion size correlated with force in stationary cells. Relative numbers of motors and cross-linkers per actin required an optimum to maximize cell force production.


Author(s):  
Evan A. Zamir

It is probably fair to say that the field of cell mechanics emerged with the pioneering work of Harris et al. [1], who observed that cells grown on thin silicone sheets generated wrinkling patterns — unfortunately, quantifying the forces at the cellular level was virtually impossible with their system. Almost two decades later, the study of cell mechanics began in earnest when Pelham and Wang [2] introduced a more rigorous method for quantifying individual cell-generated forces that quickly became known as cell traction force microscopy (CTFM), some form of which is now used in cell mechanics labs around the world. The basic idea underlying the original CTFM method is that the forces generated by cells can be calculated by solving an inverse problem for the displacement field experimentally measured by tracking microspheres embedded in a thin elastic substratum (typically polyacrylamide gel) on which the cells are cultured.


Sign in / Sign up

Export Citation Format

Share Document