ELID Grinding of Sapphire with High Hardness Iron plating Diamond Wheel

2019 ◽  
Vol 2019.27 (0) ◽  
pp. 702
Author(s):  
Takahiro SHIMIZU ◽  
Nobuhide ITOH ◽  
Masaki ISHITSUKA ◽  
Katsuhumi INAZAWA ◽  
Hitoshi OHMORI ◽  
...  
2011 ◽  
Vol 175 ◽  
pp. 131-135
Author(s):  
Fu Qiang Tong ◽  
Fei Hu Zhang ◽  
Dian Rong Luan

TN85 cermets is one kind of particle reinforced metal matrix composites, which is high hardness, good wear resistance, and bring great difficulties in processing, so it is necessary to study the processing performance. During the test on ELID grinding TN85 cermets, it is found that plastic removal is the main ways during grinding TN85 cermets materials. The powder particle size of W2.5 diamond wheel is successfully used in full removal of TN85 cermets plastic, the surface roughness value of rms: 16.81nm and Ra: 12.52nm. The results showed that: ELID grinding wheel with diamond powder technology can be used in ultra-precision machining TN85 cermets.


2018 ◽  
Vol 2018.26 (0) ◽  
pp. 702
Author(s):  
Masaki ISHITSUKA ◽  
Nobuhide ITOH ◽  
Kazuki SHIMIZU ◽  
Katsuhumi INAZAWA ◽  
Hitoshi OHMORI ◽  
...  

1994 ◽  
Vol 116 (3) ◽  
pp. 423-429 ◽  
Author(s):  
J. C. Wang ◽  
S. M. Hsu

Ceramics are hard and brittle. Machining such materials is time-consuming, difficult, and expensive. Current machining technology requires stiff machine, high hardness tools, and small material removal rates to minimize surface damage. This study demonstrates the feasibility of a novel ceramic machining concept that utilizes chemical reactions at the tool-workpiece interface to reduce the stress and minimize the surface damage. A series of cutting tests using a diamond wheel on silicon nitride with different chemical compounds has been performed. The results demonstrate that by using different chemistries, the material removal rate and the surface finish of the machined ceramic can be significantly altered. Some halogenated hydrocarbons show a significant improvement over some commercial machining fluids currently in use.


2005 ◽  
Vol 291-292 ◽  
pp. 115-120 ◽  
Author(s):  
Fei Hu Zhang ◽  
J.C. Gui ◽  
Yi Zhi Liu ◽  
Hua Li Zhang

Nano cemented carbide is a new style cutter material. Because its grain size is very small, it is superior to common cemented carbide in properties, such as high hardness, fracture toughness, flexural strength and higher abrasion resistance. As a cutter material, nano cemented carbide has wide use. In this paper, nano cemented carbide tool was ground with ELID technology, and the cutting properties of nano cemented carbide were studied, and the difference in cutting properties among the ultra-fine grain, common cemented carbide and nano cemented carbide was analyzed under the same condition. Results imply that the ground surface roughness of nano cemented carbide is obviously lower than that of common cemented carbide, and the tool life of nano cemented carbide is 5-7 times longer than that of common cemented carbide at low cutting speed.


2012 ◽  
Vol 468-471 ◽  
pp. 1560-1563 ◽  
Author(s):  
Ji Cai Kuai ◽  
Fei Hu Zhang ◽  
Ya Zhong Liu

As the grain size of nano ceramic has reached nanometer grade, it possesses high hardness, high wear resistance and high toughness. Therefore, the scalpel made by nano ceramic has the virtue of high wear resistance, good corrosion resistance, long service life, non-toxic, non-static, sharp edge and so on, but the processing of this kind of scalpel is extremely difficult. This paper prepares the nano-ceramic scalpel by using ELID grinding technology, and also studies the thickness, surface roughness, edge sharpness of scalpel. The research results show that the thickness of prepared scalpel is 0.3 mm, the surface roughness is 6-60 nm and the edge radius is 200 nm, the cutting experiment on suture shows that this scalpel can meet the requirements of international standard for medical scalpel when the cutting force is less than 0.8 N. This further proves that the ELID grinding technology is suitable for the preparation of nano-ceramic scalpel. The preparation technology and technological equipment of nano-ceramic scalpel are proposed on the basis of above achievements, and this technology possesses promising application prospect.


2015 ◽  
Vol 658 ◽  
pp. 120-124
Author(s):  
Tachai Luangvaranunt ◽  
Natthawat Tangkaratanakul ◽  
Patchanok Sakultantimetha

Diamond grinding wheel is used in high precision grinding process, when work piece has a very high hardness. For a specific grinding interval, the wheel must be properly dressed, in order to remove swarf, sharpen the worn diamond grits, open up new diamond protrusions, and recondition the bond material. Dressing of diamond grinding wheel by alumina dressing tool has been simulated in a pin-on-disk machine in the research. Sharpening of the wheel is indicated by the increase of its roughness value, and surface microstructure with protruding sharp diamond grits. It was found that increasing of sliding distant from 100 to 500 m will increase the roughness of the wheel. The increase of contact load from 10 to 20 N will also increase roughness of the wheel, and the severity of wheel wear, indicated by high values of friction coefficient. A proper dressing of this nickel bonded SD1200 diamond wheel is by sliding against alumina dressing tool for at least 300 m under 10 N load. Sliding velocity has minimal effect to the results. A too large sliding distant and load will cause severe damage to wheel surface, and severe wheel wear, indicated by its large mass loss.


Author(s):  
Akihiko NEMOTO ◽  
Nobuhide ITOH ◽  
Teruko KATOH ◽  
Hitoshi OHMORI ◽  
Y. Murata
Keyword(s):  

2005 ◽  
Vol 2005.41 (0) ◽  
pp. 231-232
Author(s):  
Yuhji Hasegawa ◽  
Toshiaki Ohmori ◽  
Nobuhide Itoh ◽  
Teruko Kato ◽  
Hitoshi Ohmori ◽  
...  
Keyword(s):  

2018 ◽  
Vol 2018 (0) ◽  
pp. YC2018-097
Author(s):  
Kazuki SHIMIZU ◽  
Nobuhide ITOH ◽  
Hitoshi OHMORI ◽  
Takashi MATSUZAWA ◽  
Katsufumi INAZAWA

2005 ◽  
Vol 291-292 ◽  
pp. 207-212 ◽  
Author(s):  
Hitoshi Ohmori ◽  
Shao Hui Yin ◽  
Wei Min Lin ◽  
Yoshihiro Uehara ◽  
Shinya MORITA ◽  
...  

Metal bonded diamond grinding wheels are widely used in the grinding process, especial in ELID grinding. However, truing is difficult owing to the high toughness of metal bond materials and high hardness of diamond abrasives. To realize high precision and high-efficiency truing, we propose a new micro-truing method consisting of electro-discharge truing and electrolysis-assisted mechanical truing in this paper. The process principle and fundamental experimental results are introduced, and the truing performance is discussed. Research results show that the proposed new method is effective for truing metal bonded diamond grinding wheels.


Sign in / Sign up

Export Citation Format

Share Document