Experiment Study on ELID Grinding of TN85 Cermets

2011 ◽  
Vol 175 ◽  
pp. 131-135
Author(s):  
Fu Qiang Tong ◽  
Fei Hu Zhang ◽  
Dian Rong Luan

TN85 cermets is one kind of particle reinforced metal matrix composites, which is high hardness, good wear resistance, and bring great difficulties in processing, so it is necessary to study the processing performance. During the test on ELID grinding TN85 cermets, it is found that plastic removal is the main ways during grinding TN85 cermets materials. The powder particle size of W2.5 diamond wheel is successfully used in full removal of TN85 cermets plastic, the surface roughness value of rms: 16.81nm and Ra: 12.52nm. The results showed that: ELID grinding wheel with diamond powder technology can be used in ultra-precision machining TN85 cermets.

2018 ◽  
Vol 7 (2.4) ◽  
pp. 117 ◽  
Author(s):  
Pranav Dev Srivyas ◽  
M S. Charoo

This review aims to explore the fundamental mechanical and tribological behavior Aluminum matrix composites (AMCs) reinforced with different reinforcements. Aluminum matrix composites are considered to be the new emerging class of materials which are having the tailored properties for specific applications. AMCs are the advanced engineering materials having superior properties as comparison to other conventional aluminum alloys. AMCs exhibits attractive properties such as high hardness, better yield strength, strength to weight ratio, high thermal conductivity, low coefficient of thermal expansion, superior wear and corrosion resistance. In recent times, because of these properties they have repealed keen interest for various potential applications in aerospace, automotive and various other structural applications.. Extensive research and development has been made in the Al-based MMCs with every possible alloy and different reinforcements so as to get the material of desired properties. By suitable use of different reinforcements in the Al metal matrix a wide range of properties combination can be obtained. The fundamental mechanical and tribological behavior of different reinforcements under dry and wet lubricated sliding conditions is recently being studied. It is reported that various reinforcement were successfully employed to decrease friction and wear in various applications. A comprehensive review is provided with the aim to analyze such properties of different reinforcements. 


2020 ◽  
Vol 321 ◽  
pp. 11028
Author(s):  
S.V. Prikhodko ◽  
O.M. Ivasishin ◽  
P.E. Markovsky ◽  
D.G. Savvakin ◽  
O.O. Stasiuk

Due to the high specific strength of Ti, materials on its base are indispensable when high-strength and low-weight requests are a chief demand from the industry. Reinforcement of Ti-alloys with hard and light particles of TiC and TiB is a credible pathway to make metal matrix composites (MMC) with enhanced elastic moduli without compromising the material’s low-weight. However, reinforcement of the alloy with hard particles inevitably lowers the value of toughness and plasticity of material. Yet, in many applications simultaneous high hardness and high plasticity are not required through the entire structure. For instance, parts that need enhanced wear resistance or resistance upon ballistic impact demand high hardness and strength at the surface, whereas their core necessitates rather high toughness and ductility. Such combination of mechanical properties can be achieved on layered structures joining two and more layers of different materials with different chemical composition and/or microstructure within each individual layer. Multi-layered structures of Ti-6Al-4V alloy and its metal-matrix composites (MMC) with 5 and10% (vol.) of TiC and TiB were fabricated in this study using blended elemental powder metallurgy (BEPM) of hydrogenated Ti. Post-sintering hot deformation and annealing were sometimes also employed to improve the microstructure and properties. Structure of materials were characterized using light optical microscopy, scanning electron microscopy, electron backscattered diffraction, x-ray microscopy, tensile and 3-point flexural tests. The effect of various fabrication parameters was investigated to achieve desirable microstructure and properties of layered materials. Using optimized processing parameters, relatively large multilayered plates were made via BEPM and demonstrate superior anti-ballistic performance compared to the equally sized uniform Ti-6Al-4V plates fabricated by traditional ingot and wrought technology.


2011 ◽  
Vol 58-60 ◽  
pp. 1792-1796
Author(s):  
Wei Li ◽  
Yu Jie Fan

Electronic in-process dressing (ELID) grinding will be a main technology of ultra-precision grinding which has been widely adopted to the ultra-precision and high effectively machining of hard and brittle materials. This study puts forward a new environmental friendly bamboo charcoal bonded (BCB) grinding wheel and develops a new ELID grinding fluid. An oxide layer is mostly determined by the electric performance of grinding fluid in the experiment. This paper founds a model to forecast grinding fluid’s electric performance by BP neural network and MATLAB. This method can be used in developing of ELID grinding machining fluid to improve the ELID grinding effect.


2015 ◽  
Vol 658 ◽  
pp. 120-124
Author(s):  
Tachai Luangvaranunt ◽  
Natthawat Tangkaratanakul ◽  
Patchanok Sakultantimetha

Diamond grinding wheel is used in high precision grinding process, when work piece has a very high hardness. For a specific grinding interval, the wheel must be properly dressed, in order to remove swarf, sharpen the worn diamond grits, open up new diamond protrusions, and recondition the bond material. Dressing of diamond grinding wheel by alumina dressing tool has been simulated in a pin-on-disk machine in the research. Sharpening of the wheel is indicated by the increase of its roughness value, and surface microstructure with protruding sharp diamond grits. It was found that increasing of sliding distant from 100 to 500 m will increase the roughness of the wheel. The increase of contact load from 10 to 20 N will also increase roughness of the wheel, and the severity of wheel wear, indicated by high values of friction coefficient. A proper dressing of this nickel bonded SD1200 diamond wheel is by sliding against alumina dressing tool for at least 300 m under 10 N load. Sliding velocity has minimal effect to the results. A too large sliding distant and load will cause severe damage to wheel surface, and severe wheel wear, indicated by its large mass loss.


2007 ◽  
Vol 534-536 ◽  
pp. 225-228 ◽  
Author(s):  
In Sup Ahn ◽  
Sung Yeal Bae ◽  
Ho Jung Cho ◽  
Chul Jin Kim ◽  
Dong Kyu Park

TiC cermet is widely used for working dies with a high hardness and tool materials. In this research, we attempted to produce submicron sized TiC powders from the ball milled TiH2 and carbon black mixture by thermal treatment. The titanium hydride and carbon composite powders were milled under argon atmosphere for 7 hours at various ball to powder ratios. At the initial stage, an increase in particle size was observed, and graphite phase disappered. The TiC phase of 300nm mean particle size was obtained by milling for 5 hours. As a result, its morphologies were excessively agglomerated. At the heat treating temperature of 500°C, TiH2 phase transformed to Ti completely and the complete TiC of lattice parameter 0.431 nm was formed when the temperature reached 1000°C. Metal matrix composites(MMCs) based on the Fe-TiC system can be synthesized by spark plasma sintering. Specimen formed sintering Fe-TiC powders display a microstructure of uniformly dispersed TiC grain in a continuous metal matrix.


Sign in / Sign up

Export Citation Format

Share Document