scholarly journals EFFECT OF WORKING FLUID ON SELECTION OF GAS TURBINE CYCLE CONFIGURATION FOR GEN-IV NUCLEAR POWER PLANT SYSTEM

Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Pericles Pilidis ◽  
Theoklis Nikolaidis ◽  
Suresh Sampath
Atomic Energy ◽  
2005 ◽  
Vol 98 (1) ◽  
pp. 21-31 ◽  
Author(s):  
A. V. Vasyaev ◽  
V. F. Golovko ◽  
I. V. Dmitrieva ◽  
N. G. Kodochigov ◽  
N. G. Kuzavkov ◽  
...  

Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis ◽  
Pericles Pilidis ◽  
Suresh Sampath

One major challenge to the accurate development of performance simulation tool for component-based nuclear power plant engine models is the difficulty in accessing component performance maps; hence, researchers or engineers often rely on estimation approach using various scaling techniques. This paper describes a multi-fluid scaling approach used to determine the component characteristics of a closed-cycle gas turbine plant from an existing component map with their design data, which can be applied for different working fluids as may be required in closed-cycle gas turbine operations to adapt data from one component map into a new component map. Each component operation is defined by an appropriate change of state equations which describes its thermodynamic behavior, thus, a consideration of the working fluid properties is of high relevance to the scaling approach. The multi-fluid scaling technique described in this paper was used to develop a computer simulation tool called GT-ACYSS, which can be valuable for analyzing the performance of closed-cycle gas turbine operations with different working fluids. This approach makes it easy to theoretically scale existing map using similar or different working fluids without carrying out a full experimental test or repeating the whole design and development process. The results of selected case studies show a reasonable agreement with available data.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis ◽  
Pericles Pilidis ◽  
Suresh Sampath

Abstract As demands for clean and sustainable energy renew interests in nuclear power to meet future energy demands, generation IV nuclear reactors are seen as having the potential to provide the improvements required for nuclear power generation. However, for their benefits to be fully realized, it is important to explore the performance of the reactors when coupled to different configurations of closed-cycle gas turbine power conversion systems. The configurations provide variation in performance due to different working fluids over a range of operating pressures and temperatures. The objective of this paper is to undertake analyses at the design and off-design conditions in combination with a recuperated closed-cycle gas turbine and comparing the influence of carbon dioxide and nitrogen as the working fluid in the cycle. The analysis is demonstrated using an in-house tool, which was developed by the authors. The results show that the choice of working fluid controls the range of cycle operating pressures, temperatures, and overall performance of the power plant due to the thermodynamic and heat properties of the fluids. The performance results favored the nitrogen working fluid over CO2 due to the behavior CO2 below its critical conditions. The analyses intend to aid the development of cycles for generation IV nuclear power plants (NPPs) specifically gas-cooled fast reactors (GFRs) and very high-temperature reactors (VHTRs).


Author(s):  
L. D. Stoughton ◽  
T. V. Sheehan

A nuclear power plant is proposed which combines the advantages of a liquid metal fueled reactor with those inherent in a closed cycle gas turbine. The reactor fuel is a solution of uranium in molten bismuth which allows for unlimited burn-up with continuous fuel make-up and processing. The fuel can either be contained in a graphite core structure or circulated through an external heat exchanger. The cycle working fluid is an inert gas which is heated by the reactor fuel before entering the turbine. A 15 MW closed cycle gas turbine system is shown to illustrate the application of this reactor.


Author(s):  
H. Boonstra ◽  
A. C. Groot ◽  
C. A. Prins

This paper presents the outcome of a study on the feasibility of a nuclear powered High-Speed Pentamaran, initiated by Nigel Gee and Associates and the Delft University of Technology. It explores the competitiveness of a nuclear power plant for the critical characteristics of a marine propulsion plant. Three nuclear reactor types are selected: the Pressurized Water Reactor (PWR), the Pebble-bed and Prismatic-block HTGR. Their characteristics are estimated for a power range from 100 MWth to 1000 MWth in a parametric design, providing a level base for comparison with conventional gas turbine technology. The reactor scaling is based on reference reactors with an emphasis on marine application. This implies that preference is given to passive safety and simplicity, as they are key-factors for a marine power plant. A case study for a 60-knot Pentamaran shows the impact of a nuclear power plant on a ship designed with combustion gas turbine propulsion. The Prismatic-block HTGR is chosen as most suitable because of its low weight compared to the PWR, in spite of the proven technology of a PWR. The Pebble-bed HTGR is considered too voluminous for High-Speed craft. Conservative data and priority to simple systems and high safety leads to an unfavorable high weight of the nuclear plant in competition with the original gas turbine driven Pentamaran. The nuclear powered ship has some clear advantages at high sailing ranges.


Author(s):  
Mitsuru IMAMURA ◽  
Kotaro SATO ◽  
Tadashi NARABAYASI ◽  
Yoichiro SHIMAZU ◽  
Masashi TUJI

1987 ◽  
Vol 79 (3) ◽  
pp. 311-321 ◽  
Author(s):  
Fahmy M. Hussein ◽  
Mohamed A. Obeid ◽  
Khalid S. El-Malahy

Sign in / Sign up

Export Citation Format

Share Document