Multi-Fluid Gas Turbine Components Scaling for a Generation IV Nuclear Power Plant Performance Simulation

Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis ◽  
Pericles Pilidis ◽  
Suresh Sampath

One major challenge to the accurate development of performance simulation tool for component-based nuclear power plant engine models is the difficulty in accessing component performance maps; hence, researchers or engineers often rely on estimation approach using various scaling techniques. This paper describes a multi-fluid scaling approach used to determine the component characteristics of a closed-cycle gas turbine plant from an existing component map with their design data, which can be applied for different working fluids as may be required in closed-cycle gas turbine operations to adapt data from one component map into a new component map. Each component operation is defined by an appropriate change of state equations which describes its thermodynamic behavior, thus, a consideration of the working fluid properties is of high relevance to the scaling approach. The multi-fluid scaling technique described in this paper was used to develop a computer simulation tool called GT-ACYSS, which can be valuable for analyzing the performance of closed-cycle gas turbine operations with different working fluids. This approach makes it easy to theoretically scale existing map using similar or different working fluids without carrying out a full experimental test or repeating the whole design and development process. The results of selected case studies show a reasonable agreement with available data.

Author(s):  
L. D. Stoughton ◽  
T. V. Sheehan

A nuclear power plant is proposed which combines the advantages of a liquid metal fueled reactor with those inherent in a closed cycle gas turbine. The reactor fuel is a solution of uranium in molten bismuth which allows for unlimited burn-up with continuous fuel make-up and processing. The fuel can either be contained in a graphite core structure or circulated through an external heat exchanger. The cycle working fluid is an inert gas which is heated by the reactor fuel before entering the turbine. A 15 MW closed cycle gas turbine system is shown to illustrate the application of this reactor.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis ◽  
Pericles Pilidis ◽  
Suresh Sampath

Abstract As demands for clean and sustainable energy renew interests in nuclear power to meet future energy demands, generation IV nuclear reactors are seen as having the potential to provide the improvements required for nuclear power generation. However, for their benefits to be fully realized, it is important to explore the performance of the reactors when coupled to different configurations of closed-cycle gas turbine power conversion systems. The configurations provide variation in performance due to different working fluids over a range of operating pressures and temperatures. The objective of this paper is to undertake analyses at the design and off-design conditions in combination with a recuperated closed-cycle gas turbine and comparing the influence of carbon dioxide and nitrogen as the working fluid in the cycle. The analysis is demonstrated using an in-house tool, which was developed by the authors. The results show that the choice of working fluid controls the range of cycle operating pressures, temperatures, and overall performance of the power plant due to the thermodynamic and heat properties of the fluids. The performance results favored the nitrogen working fluid over CO2 due to the behavior CO2 below its critical conditions. The analyses intend to aid the development of cycles for generation IV nuclear power plants (NPPs) specifically gas-cooled fast reactors (GFRs) and very high-temperature reactors (VHTRs).


Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Nasiru Tukur ◽  
Pericles Pilidis

Abstract A unique benefit of using the closed-cycle gas turbine and gas turbomachines employed in the Gen-IV nuclear power plant is the flexibility it offers in terms of working fluid usage. This is so because of the self-containing nature of the closed-cycle gas turbine. To this end, the selection of the working fluid for the cycle operation is driven by several factors such as the cycle performance, system design, and component material compatibility with fluid properties, availability, and many more. This paper provides an understanding of the design and operational challenges of switching working fluids for a nuclear powered closed-cycle gas turbine. Using the plant output power of a simple closed-cycle configuration as a baseline condition, two case studies have been presented in this paper to explore the design and operational challenges of switching working fluids. In the first case study, the fluid was switched from nitrogen to air and in the second case study, helium and argon were utilised. In both cases, using thermodynamic flow relationship, the closed-cycle gas turbine turbomachinery components maps were analysed to understand the operational requirements for switching the working fluids. The paper also provided an insight into the turbomachinery component design considerations for this to be achieved. The overarching results from a thermodynamic perspective showed fluids with similar thermodynamic behaviour could be switched during idle synchronous speed.


Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis ◽  
Pericles Pilidis ◽  
Suresh Sampath

With renewed interest in nuclear power to meet the world’s future energy demand, the Generation IV nuclear reactors are the next step in the deployment of nuclear power generation. However, for the potentials of these nuclear reactor designs to be fully realized, its suitability, when coupled with different configurations of closed-cycle gas turbine power conversion systems, have to be explored and performance compared for various possible working fluids over a range of operating pressures and temperatures. The purpose of this paper is to carry out performance analysis at the design and off-design conditions for a Generation IV nuclear-powered reactor in combination with a recuperated closed-cycle gas turbine and comparing the influence of carbon dioxide and nitrogen as working fluid in the cycle. This analysis is demonstrated in GTACYSS; a performance and preliminary design code developed by the authors for closed-cycle gas turbine simulations. The results obtained shows that the choice of working fluid controls the range of cycle operating pressures, temperatures and overall performance of the power plant due to the thermodynamic and heat properties of the fluids. The performance results favored the nitrogen working fluid over CO2 due to the behavior CO2 below its critical conditions.


1967 ◽  
Vol 89 (2) ◽  
pp. 229-236 ◽  
Author(s):  
G. Angelino

The possibility of performing a liquid phase compression in closed cycle gas turbine through the use of particular working fluids is discussed. From the results of calculations carried out for different fluids there is evidence that efficiency of the resulting cycle is considerably higher than that of regenerative Brayton cycles and comparable with that of regenerative Rankine cycles. The working fluid selection is recognized as the major problem in view of practical applications. Available data strongly support the conclusion that fluids meeting the needed requirements, at least for moderate temperature operation, can be found. Nuclear power stations appear to be one of the most promising fields of application of the liquid phase compression cycle.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis ◽  
Pericles Pilidis ◽  
Suresh Sampath

Abstract A significant hurdle in the development of performance simulation tools to analyze and evaluate nuclear power plants (NPP) is finding data relating to component performance maps. As a result, engineers often rely on an estimation approach using various scaling techniques. The purpose of this study is to determine the component characteristics of a closed-cycle gas turbine NPP using the existing component maps with the corresponding design data. The design data are applied for different working fluids using a multifluid scaling approach to adapt data from one component map into another. The multifluid scaling technique described herein was developed as an in-house computer simulation tool. This approach makes it easy to theoretically scale the existing maps using similar or different working fluids without carrying out a full experimental test or repeating the whole design and development process. The results of selected case studies show a reasonable agreement with the available data. The analyses intend to aid the development of cycles for Generation IV NPPs specifically gas-cooled fast reactors (GFRs) and very high-temperature reactors (VHTRs).


Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Pericles Pilidis ◽  
Theoklis Nikolaidis ◽  
Suresh Sampath

Atomic Energy ◽  
2005 ◽  
Vol 98 (1) ◽  
pp. 21-31 ◽  
Author(s):  
A. V. Vasyaev ◽  
V. F. Golovko ◽  
I. V. Dmitrieva ◽  
N. G. Kodochigov ◽  
N. G. Kuzavkov ◽  
...  

Author(s):  
H. Boonstra ◽  
A. C. Groot ◽  
C. A. Prins

This paper presents the outcome of a study on the feasibility of a nuclear powered High-Speed Pentamaran, initiated by Nigel Gee and Associates and the Delft University of Technology. It explores the competitiveness of a nuclear power plant for the critical characteristics of a marine propulsion plant. Three nuclear reactor types are selected: the Pressurized Water Reactor (PWR), the Pebble-bed and Prismatic-block HTGR. Their characteristics are estimated for a power range from 100 MWth to 1000 MWth in a parametric design, providing a level base for comparison with conventional gas turbine technology. The reactor scaling is based on reference reactors with an emphasis on marine application. This implies that preference is given to passive safety and simplicity, as they are key-factors for a marine power plant. A case study for a 60-knot Pentamaran shows the impact of a nuclear power plant on a ship designed with combustion gas turbine propulsion. The Prismatic-block HTGR is chosen as most suitable because of its low weight compared to the PWR, in spite of the proven technology of a PWR. The Pebble-bed HTGR is considered too voluminous for High-Speed craft. Conservative data and priority to simple systems and high safety leads to an unfavorable high weight of the nuclear plant in competition with the original gas turbine driven Pentamaran. The nuclear powered ship has some clear advantages at high sailing ranges.


Sign in / Sign up

Export Citation Format

Share Document