EFFICIENT INVERSE DYNAMICS CONTROL OF MULTIBODY SYSTEMS

Author(s):  
Nils Guse ◽  
Werner Schiehlen
2020 ◽  
Vol 11 (1) ◽  
pp. 353
Author(s):  
Thomas Flayols ◽  
Andrea Del Prete ◽  
Majid Khadiv ◽  
Nicolas Mansard ◽  
Ludovic Righetti

Contacts between robots and environment are often assumed to be rigid for control purposes. This assumption can lead to poor performance when contacts are soft and/or underdamped. However, the problem of balancing on soft contacts has not received much attention in the literature. This paper presents two novel approaches to control a legged robot balancing on visco-elastic contacts, and compares them to other two state-of-the-art methods. Our simulation results show that performance heavily depends on the contact stiffness and the noises/uncertainties introduced in the simulation. Briefly, the two novel controllers performed best for soft/medium contacts, whereas “inverse-dynamics control under rigid-contact assumptions” was the best one for stiff contacts. Admittance control was instead the most robust, but suffered in terms of performance. These results shed light on this challenging problem, while pointing out interesting directions for future investigation.


Author(s):  
Stefan Reichl ◽  
Wolfgang Steiner

This work presents three different approaches in inverse dynamics for the solution of trajectory tracking problems in underactuated multibody systems. Such systems are characterized by less control inputs than degrees of freedom. The first approach uses an extension of the equations of motion by geometric and control constraints. This results in index-five differential-algebraic equations. A projection method is used to reduce the systems index and the resulting equations are solved numerically. The second method is a flatness-based feedforward control design. Input and state variables can be parameterized by the flat outputs and their time derivatives up to a certain order. The third approach uses an optimal control algorithm which is based on the minimization of a cost functional including system outputs and desired trajectory. It has to be distinguished between direct and indirect methods. These specific methods are applied to an underactuated planar crane and a three-dimensional rotary crane.


1992 ◽  
Vol 114 (2) ◽  
pp. 229-233 ◽  
Author(s):  
K. P. Jankowski ◽  
H. Van Brussel

This paper focuses on the problem of the application of inverse dynamics control methods to robots with flexible joints and electromechanical actuators. Due to drawbacks of the continuous-time inverse dynamics, discussed in the paper, a new control strategy in discrete-time is presented. The proposed control algorithm is based on numerical methods conceived for the solution of index-three systems of differential-algebraic equations. The method is computationally efficient and admits low sampling frequencies. The results of numerical experiments confirm the advantages of the designed control algorithm.


2017 ◽  
Vol 10 (1) ◽  
pp. 37-49 ◽  
Author(s):  
Josep Virgili-Llop ◽  
Costantinos Zagaris ◽  
Hyeongjun Park ◽  
Richard Zappulla ◽  
Marcello Romano

Author(s):  
Mohammad Poursina ◽  
Kurt S. Anderson

Generalized divide and conquer algorithm (GDCA) is presented in this paper. In this new formulation, generalized forces appear explicitly in handle equations in addition to the spatial forces, absolute and generalized coordinates which have already been used in the original version of DCA. To accommodate these generalized forces in handle equations, a transformation is presented in this paper which provides an equivalent spatial force as an explicit function of a given generalized force. Each generalized force is then replaced by its equivalent spatial force applied from the appropriate parent body to its child body at the connecting joint without violating the dynamics of the original system. GDCA can be widely used in multibody problems in which a part of the forcing information is provided in generalized format. Herein, the application of the GDCA in controlling multibody systems in which the known generalized forces are fedback to the system is explained. It is also demonstrated that in inverse dynamics and closed-loop control problems in which the imposed constraints are often expressed in terms of generalized coordinates, a set of unknown generalized forces must be considered in the dynamics of system. As such, using both spatial and generalized forces, GDCA can be widely used to model these complicated multibody systems if it is desired to benefit from the computational advantages of the DCA.


1999 ◽  
Vol 66 (4) ◽  
pp. 986-996 ◽  
Author(s):  
S. K. Saha

Constrained dynamic equations of motion of serial multibody systems consisting of rigid bodies in a serial kinematic chain are derived in this paper. First, the Newton-Euler equations of motion of the decoupled rigid bodies of the system at hand are written. Then, with the aid of the decoupled natural orthogonal complement (DeNOC) matrices associated with the velocity constraints of the connecting bodies, the Euler-Lagrange independent equations of motion are derived. The De NOC is essentially the decoupled form of the natural orthogonal complement (NOC) matrix, introduced elsewhere. Whereas the use of the latter provides recursive order n—n being the degrees-of-freedom of the system at hand—inverse dynamics and order n3 forward dynamics algorithms, respectively, the former leads to recursive order n algorithms for both the cases. The order n algorithms are desirable not only for their computational efficiency but also for their numerical stability, particularly, in forward dynamics and simulation, where the system’s accelerations are solved from the dynamic equations of motion and subsequently integrated numerically. The algorithms are illustrated with a three-link three-degrees-of-freedom planar manipulator and a six-degrees-of-freedom Stanford arm.


Sign in / Sign up

Export Citation Format

Share Document