Numerical Study on Effects of Process Parameters on Residual Stress Distribution in Selective Laser Melting

2019 ◽  
Vol 2019.94 (0) ◽  
pp. 305
Author(s):  
Tomoharu Orita ◽  
Takumu CHINEN ◽  
Muneyoshi IYOTA
2019 ◽  
Vol 224 ◽  
pp. 05006
Author(s):  
Tong Ye ◽  
Xiaohui Jiang ◽  
Miaoxian Guo ◽  
Vladimir Kuptsov ◽  
Sergey Fedorov

In this paper, the selective laser melting (SLM) simulation analysis of components is carried out. The residual stress distribution of the formed part was predicted, and the influence of process parameters such as exposure time, laser power and laser scanning speed on the residual stress of the SLM formed part was analyzed. It was found that the residual stress concentration of the formed part was in the middle of the upper surface or the bottom surface. In addition, the laser power and the laser scanning speed have a great influence on the residual stress of the formed part. The results of this study lay a theoretical and experimental basis for the optimization of residual stress and quality control of SLM components.


Optik ◽  
2018 ◽  
Vol 170 ◽  
pp. 342-352 ◽  
Author(s):  
Jia Song ◽  
Wenheng Wu ◽  
Liang Zhang ◽  
Beibei He ◽  
Lin Lu ◽  
...  

Author(s):  
Changpeng Chen ◽  
Haihong Zhu ◽  
Zhongxu Xiao ◽  
Shiwen Liu ◽  
Jie Yin ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 930 ◽  
Author(s):  
Martin Malý ◽  
Christian Höller ◽  
Mateusz Skalon ◽  
Benjamin Meier ◽  
Daniel Koutný ◽  
...  

The aim of this study is to observe the effect of process parameters on residual stresses and relative density of Ti6Al4V samples produced by Selective Laser Melting. The investigated parameters were hatch laser power, hatch laser velocity, border laser velocity, high-temperature preheating and time delay. Residual stresses were evaluated by the bridge curvature method and relative density by the optical method. The effect of the observed process parameters was estimated by the design of experiment and surface response methods. It was found that for an effective residual stress reduction, the high preheating temperature was the most significant parameter. High preheating temperature also increased the relative density but caused changes in the chemical composition of Ti6Al4V unmelted powder. Chemical analysis proved that after one build job with high preheating temperature, oxygen and hydrogen content exceeded the ASTM B348 limits for Grade 5 titanium.


2014 ◽  
Vol 996 ◽  
pp. 506-511
Author(s):  
Intissar Frih ◽  
Pierre Antoine Adragna ◽  
Guillaume Montay

This paper presents a study on the application of the finite element methods to predict the influence of a defect on the residual stress distribution in a T-welded structure. A defect is introduced in a numerical model firstly without residual stress to see its impact (size and position) on the stress distribution. Secondly the most critical defect (determined previously) is simulated with a residual stress gradient. The obtained results are useful for computation stress concentration factor due to weld residual stresses.


2019 ◽  
Vol 25 (8) ◽  
pp. 1359-1369 ◽  
Author(s):  
Changpeng Chen ◽  
Jie Yin ◽  
Haihong Zhu ◽  
Xiaoyan Zeng ◽  
Guoqing Wang ◽  
...  

Purpose High residual stress caused by the high temperature gradient brings undesired effects such as shrinkage and cracking in selective laser melting (SLM). The purpose of this study is to predict the residual stress distribution and the effect of process parameters on the residual stress of selective laser melted (SLMed) Inconel 718 thin-walled part. Design/methodology/approach A three-dimensional (3D) indirect sequentially coupled thermal–mechanical finite element model was developed to predict the residual stress distribution of SLMed Inconel 718 thin-walled part. The material properties dependent on temperature were taken into account in both thermal and mechanical analyses, and the thermal elastic–plastic behavior of the material was also considered. Findings The residual stress changes from compressive stress to tensile stress along the deposition direction, and the residual stress increases with the deposition height. The maximum stress occurs at both ends of the interface between the part and substrate, while the second largest stress occurs near the top center of the part. The residual stress increases with the laser power, with the maximum equivalent stress increasing by 21.79 per cent as the laser power increases from 250 to 450 W. The residual stress decreases with an increase in scan speed with a reduction in the maximum equivalent stress of 13.67 per cent, as the scan speed increases from 500 to 1,000 mm/s. The residual stress decreases with an increase in layer thickness, and the maximum equivalent stress reduces by 33.12 per cent as the layer thickness increases from 20 to 60µm. Originality/value The residual stress distribution and effect of process parameters on the residual stress of SLMed Inconel 718 thin-walled part are investigated in detail. This study provides a better understanding of the residual stress in SLM and constructive guidance for process parameters optimization.


Sign in / Sign up

Export Citation Format

Share Document