20409 Stress distribution around the roots using the stress analysis system

2009 ◽  
Vol 2009.15 (0) ◽  
pp. 239-240
Author(s):  
Manabu KOHARA ◽  
Shigeyuki MATUI ◽  
Yuichiro OTSUKA ◽  
Yousuke SAKURAI ◽  
Haruhide KANEGAE ◽  
...  
1990 ◽  
Vol 112 (3) ◽  
pp. 268-275 ◽  
Author(s):  
A. R. Heath ◽  
P. M. McNamara

The conflicting legislative and customer pressures on engine design, for example, combining low friction and a high level of refinement, require sophisticated tools if competitive designs are to be realized. This is particularly true of crankshafts, probably the most analyzed of all engine components. This paper describes the hierarchy of methods used for crankshaft stress analysis with case studies. A computer-based analysis system is described that combines FE and classical methods to allow optimized designs to be produced efficiently. At the lowest level simplified classical techniques are integrated into the CAD-based design process. These methods give the rapid feedback necessary to perform concept design iterations. Various levels of FE analysis are available to carry out more detailed analyses of the crankshaft. The FE studies may feed information to or take information from the classical methods. At the highest level a method for including the load sharing effects of the flexible crankshaft within a flexible block interconnected by nonlinear oil films is described. This method includes the FE modeling of the complete crankshaft and the consideration of its stress field throughout an engine cycle. Fatigue assessment is performed to calculate the distribution of fatigue safety factor on the surface of the crankshaft. This level of analysis can be used for failure investigation, or detailed design optimization and verification. The method is compatible with those used for vibration and oil film analysis.


2010 ◽  
Vol 663-665 ◽  
pp. 1073-1076 ◽  
Author(s):  
Xun Liu ◽  
Jun Yan Liu ◽  
Xu Dong Li ◽  
Guang Yu Zhang

This paper describes a theoretical and experimental analysis on full-filed stress distribution from thermoelastic measurements and its application to determination of stress concentration. The sum of the principle stress can be measured by Thermal Stress Analysis (TSA). Lock-in Thermography is very effective tool to measure the structure stress distribution by its high thermal resolving. In this study, the thermoelastic effect theory is described and the relationship between the temperature and the applied stress is developed in an elastic material. Experiments were carried out with 2A12 aluminium alloys plate and ones with hole structure under cyclic load. The thermoelastic effect coefficient is obtained for 2A12 aluminium alloys materials, and the effect law is analyzed that the stress value measured was affected by load frequencies. The optional load frequency is obtained, and that is, the load frequency is selected greater than 3.5Hz for 2Al12 materilas, and it was found that the structure stress can be evaluated with good accuracies by the lock in thermography. The experiment was carried out for aircraft components stress distribution measurement and structure stress analysis. The experimental results show the stress concentration position is easy found from stress distribution by lock-in thermography.


1989 ◽  
Vol 33 ◽  
pp. 353-362 ◽  
Author(s):  
Masanori Kurita ◽  
Makoto Sato ◽  
Ikuo Ihara ◽  
Akira Saito

AbstractCeramics are sometimes bonded to ductile metals in order to make up for their brittle behavior for industrial use. The residual stress will be induced in ceramics bonded to metals at high temeprature, and it has a strong influence on the strength of ceramic-metal joints. A silicon nitride plate was bonded to a carbon steel plate by brazing to a copper sheet sandwiched between the two materials. The residual stress distribution of the joint specimen was determined by x-ray diffraction using the Gaussian curve method. The measured residual stress distribution almost agreed with that calculated by the three-dimensional thermoelastoplastic stress analysis using FEM, but differed remarkably from that calculated by the two-dimensional stress analysis. This is because a stress concentration occurs at the ceramic-metal interface and the stress distributes three - dimensionally. The stress σx in the axial direction on the surface of the specimen takes maximum values at the center and the edge of the interface.


Author(s):  
D. J. Zhang ◽  
M. Zeng ◽  
Q. W. Wang

Recuperator in a microturbine system, which has to work under a high temperature and high pressure condition, is a key component to improve the electricity efficiency of the system. High temperature and pressure may cause high stress inside the Cross-Wavy Primary Surface (CWPS) sheet, and it is essential to analyze the stress distribution to ensure the security while the recuperator is working. In this paper the combined thermomechanical design of a CWPS recuperator for a 100kW microturbine system is presented. With the ANSYS Parametric Design Language (APDL), calculation procedures for heat transfer and stress analysis are combined in order to perform a reliable strength prediction of the recuperator. A program has been generated, which allows the automatic generation of the numerical model, the mesh and the boundary conditions. Also with the energy minimum principle, an optimal configuration of the air and gas passages is obtained. The results show that the material of the primary sheet (0Cr18Ni11Nb) is reliable. The stress distribution changes with the different configuration of the passages. Since the air pressure is much higher than that of the exhaust gas, the configuration of the primary sheet is much better when the sectional area of the gas passage is larger than that of the air passage. If the pitch of the sheet is maintained at 2mm, the best configuration is obtained when the dimension of passage is at r = 0.35–0.42mm, R = 0.55–0.48mm.


2010 ◽  
Vol 29-32 ◽  
pp. 2775-2780
Author(s):  
Xun Liu ◽  
Jun Yan Liu ◽  
Jing Min Dai

This paper describes a theoretical and experimental analysis on full-filed stress distribution from thermoelastic measurements and its application to determination of stress concentration. The sum of the principal stress can be measured by Thermal Stress Analysis (TSA). Lock-in Thermography has been applied to measure the sum of principal stress distribution of component structure by its high thermal resolving. In this study, Finite element method is used to calculate the sum of principal stress distribution, and the thermoelastic effect model is developed to study the relationship between the temperature deviation and the applied stress in an elastic material. Experiments were carried out with ANSI 7071 high strength aluminum alloys ply and ones with a crack under cyclic load. The thermoelastic constant is obtained for ANSI 7071 high strength aluminum alloys materials. The stress concentration factor is calculated for a ply with modeling crack under the condition of different loads. The experiment was carried out with high strength aluminum alloys component structure with rivet joints. The experimental results show the stress distribution can be measured and analyzed the contact stress distribution between ply and rivet by using Lock-in thermography. It was found that the structure stress can be evaluated with good accuracies by the lock in thermography.


Sign in / Sign up

Export Citation Format

Share Document