1007 Choke and Heat transfer of Mini channel Operating at High Pressure Ratio

2005 ◽  
Vol 2005.58 (0) ◽  
pp. 371-372
Author(s):  
Matthew B. Rivera ◽  
Randall D. Manteufel

A current issue with high-pressure-ratio compressors found in aircraft engines is the temperature of the air exiting the compressor. The exiting air is used as coolant for engine components found in later stages of the engine such as first-stage turbine blades, and afterburner walls. A viable option for reducing outlet temperature of high-pressure-ratio compressors is to “bleed-off” a fraction of the air which is cooled in a heat exchanger by rejecting heat into the liquid fuel stream and then use the air for cooling critical components downstream. Bleeding off air from the outlet of the compressor has two benefits: (1) air temperature is reduced, and (2) fuel temperature is elevated. Along with reduced air temperatures, the fuel will ultimately receive the heat lost from the air, making the fuel more ideal for combustion purposes. The higher temperature the fuel is received in the combustion process, the greater the work output will be according to the basics of thermodynamic combustion. The objective of this case study is to optimize the efficiency of the cross-flow micro channel heat exchanger, with respect to (1) volume (1.75–2.75 mm3) and heat transfer, and (2) weight (0.15–.25 N) and heat transfer. The optimization of the heat exchanger will be evaluated within the bounds of the 2nd law of thermodynamics (exergy). The only effective way to measure the 2nd law of thermodynamics is through exergy destruction or its equivalent form: entropy generation as a factor of dead state temperature. With relations and equations obtained to design an optimal heat exchanger, applications to high performance aircraft gas turbine engines is considered through exergy. The importance of developing an exergetic analysis for a thermal system is highly effective for identifying area’s within the system that have the path of highest resistance to work potential through various modes of heat transfer and pressure loss. Thus, optimization to reduce exergy destruction is sought after through this design method alongside verifying other heat exchanger methods through effectiveness.


1975 ◽  
Vol 97 (2) ◽  
pp. 174-179
Author(s):  
J. A. Block ◽  
P. W. Runstadler

Results are displayed which show the effect of gas specific heat ratio, impeller tip running clearance, and compressor insulation on modeling of a high-pressure-ratio compressor’s performance. The data were obtained using a low-speed-of-sound gas and a compressor previously tested extensively in air. Duplication of the air inlet specific heat ratio was found to be essential to modeling the air-equivalent flow rate accurately. Stage pressure ratio and stage efficiency were found to be less sensitive to the accurate replication of the air specific heat ratio. For the compressor tested, stage isentropic efficiency increased as impeller-to-shroud tip running clearance was reduced from 15 to 5 percent of the impeller tip axial depth. The measured stage efficiency was found to depend strongly on the heat transfer between the compressor and surroundings.


2013 ◽  
Vol 56 (6) ◽  
pp. 1361-1369 ◽  
Author(s):  
XinQian Zheng ◽  
Yun Lin ◽  
BinLin Gan ◽  
WeiLin Zhuge ◽  
YangJun Zhang

Author(s):  
Hideaki Tamaki

Centrifugal compressors used for turbochargers need to achieve a wide operating range. The author has developed a high pressure ratio centrifugal compressor with pressure ratio 5.7 for a marine use turbocharger. In order to enhance operating range, two different types of recirculation devices were applied. One is a conventional recirculation device. The other is a new one. The conventional recirculation device consists of an upstream slot, bleed slot and the annular cavity which connects both slots. The new recirculation device has vanes installed in the cavity. These vanes were designed to provide recirculation flow with negative preswirl at the impeller inlet, a swirl counterwise to the impeller rotational direction. The benefits of the application of both of the recirculation devices were ensured. The new device in particular, shifted surge line to a lower flow rate compared to the conventional device. This paper discusses how the new recirculation device affects the flow field in the above transonic centrifugal compressor by using steady 3-D calculations. Since the conventional recirculation device injects the flow with positive preswirl at the impeller inlet, the major difference between the conventional and new recirculation device is the direction of preswirl that the recirculation flow brings to the impeller inlet. This study focuses on two effects which preswirl of the recirculation flow will generate. (1) Additional work transfer from impeller to fluid. (2) Increase or decrease of relative Mach number. Negative preswirl increases work transfer from the impeller to fluid as the flow rate reduces. It increases negative slope on pressure ratio characteristics. Hence the recirculation flow with negative preswirl will contribute to stability of the compressor. Negative preswirl also increases the relative Mach number at the impeller inlet. It moves shock downstream compared to the conventional recirculation device. It leads to the suppression of the extension of blockage due to the interaction of shock with tip leakage flow.


Author(s):  
K. R. Pullen ◽  
N. C. Baines ◽  
S. H. Hill

A single stage, high speed, high pressure ratio radial inflow turbine was designed for a single shaft gas turbine engine in the 200 kW power range. A model turbine has been tested in a cold rig facility with correct simulation of the important non-dimensional parameters. Performance measurements over a wide range of operation were made, together with extensive volute and exhaust traverses, so that gas velocities and incidence and deviation angles could be deduced. The turbine efficiency was lower than expected at all but the lowest speed. The rotor incidence and exit swirl angles, as obtained from the rig test data, were very similar to the design assumptions. However, evidence was found of a region of separation in the nozzle vane passages, presumably caused by a very high curvature in the endwall just upstream of the vane leading edges. The effects of such a separation are shown to be consistent with the observed performance.


Author(s):  
Richard Celestina ◽  
Spencer Sperling ◽  
Louis Christensen ◽  
Randall Mathison ◽  
Hakan Aksoy ◽  
...  

Abstract This paper presents the development and implementation of a new generation of double-sided heat-flux gauges at The Ohio State University Gas Turbine Laboratory (GTL) along with heat transfer measurements for film-cooled airfoils in a single-stage high-pressure transonic turbine operating at design corrected conditions. Double-sided heat flux gauges are a critical part of turbine cooling studies, and the new generation improves upon the durability and stability of previous designs while also introducing high-density layouts that provide better spatial resolution. These new customizable high-density double-sided heat flux gauges allow for multiple heat transfer measurements in a small geometric area such as immediately downstream of a row of cooling holes on an airfoil. Two high-density designs are utilized: Type A consists of 9 gauges laid out within a 5 mm by 2.6 mm (0.20 inch by 0.10 inch) area on the pressure surface of an airfoil, and Type B consists of 7 gauges located at points of predicted interest on the suction surface. Both individual and high-density heat flux gauges are installed on the blades of a transonic turbine experiment for the second build of the High-Pressure Turbine Innovative Cooling program (HPTIC2). Run in a short duration facility, the single-stage high-pressure turbine operated at design-corrected conditions (matching corrected speed, flow function, and pressure ratio) with forward and aft purge flow and film-cooled blades. Gauges are placed at repeated locations across different cooling schemes in a rainbow rotor configuration. Airfoil film-cooling schemes include round, fan, and advanced shaped cooling holes in addition to uncooled airfoils. Both the pressure and suction surfaces of the airfoils are instrumented at multiple wetted distance locations and percent spans from roughly 10% to 90%. Results from these tests are presented as both time-average values and time-accurate ensemble averages in order to capture unsteady motion and heat transfer distribution created by strong secondary flows and cooling flows.


Sign in / Sign up

Export Citation Format

Share Document