Digital Inovation for the Product Engineering Process(Digital Engineering)

2003 ◽  
Vol 106 (1013) ◽  
pp. 246-249
Author(s):  
Masahiro AKIYAMA
2017 ◽  
Vol 3 ◽  
Author(s):  
Albert Albers ◽  
Matthias Behrendt ◽  
Simon Klingler ◽  
Nicolas Reiß ◽  
Nikola Bursac

Most products are developed in generations. This needs to be considered with regard to development methods and processes to make existing knowledge available to achieve increased efficiency. To realize this, the approach of PGE – product generation engineering – is formulated. Product generation engineering is understood as the development of products based on reference products (precursor or competitor products). The subsystems are either adapted to the new product generation by means of carryover or they are newly developed based on shape variation or principle variation. Validation is considered as the central activity in the product engineering process and is a major challenge, especially for complex mechatronic systems. Therefore, it is important to understand validation as an ongoing activity during product development. The pull principle of validation describes the definition and development of validation activities, including models and validation environments based on specific validation objectives. In order to have effectiveness within validation of subsystems, it is necessary to map the interactions with the overall system, namely the super-system. The relevant subsystems can be connected under consideration of functional and energetic aspects by means of virtual, physical or mixed virtual–physical modeling applied by the holistic IPEK-X-in-the-Loop approach within the integrated Product engineering Model (iPeM).


Author(s):  
Jörg Miehling ◽  
Jürgen Schuhhardt ◽  
Florian Paulus-Rohmer ◽  
Sandro Wartzack

Computer aided ergonomics and particularly biomechanical simulations hold high potential for the implementation of the virtual product development paradigm in the field of human-centric design. Unfortunately, the relation between efforts to be invested to the insights gained by musculoskeletal simulations is still not sufficient for a widespread industrial application. This contribution shows how parametric biomechanical simulations can be used to gain specific indications on how interaction points of human-centric products are to be designed to meet the competencies of a given target user. This is demonstrated using cycling and rowing as two exemplary activities involving the entire human body. These activities are empirically well studied and electromyographic as well as force measurements are available. The comparison of the biomechanical simulations to the real-world scenario permits the validation of the proposed parametric approach as well as the applied models. This is a prerequisite for its application along the product engineering process.


2014 ◽  
Vol 8 (3) ◽  
pp. 303-303
Author(s):  
Satoshi Kanai ◽  
Keiichi Shirase

Advanced products demand advanced CAD, CAM, and digital engineering systems. This is the main consideration in this special issue. It is well understood by all manufacturers nowadays that CAD, CAM, and digital engineering systems behave as “Hidden factories” of engineering information processing and are indispensable to the accomplishment of their daily tasks. No products can be planned, designed, machined, and assembled without these hidden factories. The history of CAD/CAM goes back nearly five decades, yet the technologies are still immature: a lot of technical issues remain to be solved because new materials and structures have been introduced in products, new manufacturing technologies have been utilized, and new social needs, such as the need for ”eco-X” or ”human-oriented” products, have grown along with the dramatic changes in society. New high-performance computing resources, such asWeb-based computing or GPUcomputing, have also become available for implementation in these systems. Thirteen technical papers in this issue tackle these challenges, proposing solutions from utilizing technologies, including computer-aided geometric design (CAGD), CAD, CAE, CAPP, and CAM, as well as novel human interfaces for these systems. Some of the papers, revised and extended in response to the editors’ invitations, are versions of works presented at the Asian Conference on Design and Digital Engineering 2012 (Niseko, Japan) and 2013 (Seoul, Korea). In addition, two well-organized review papers in this issue provide informative and comprehensive surveys of aesthetic curve and surface design in CAGD and knowledge structuring and logic reasoning in CAPP, respectively. They include rich lists of references which will help the readers to quickly gain an overview of the current status and future research directions of these fields. Finally, the editors sincerely thank all the authors and anonymous reviewers for their devoted work, as they made this special issue possible. We expect that it will encourage further research on advanced CAD, CAM, CAE, CAPP, and digital engineering systems.


Sign in / Sign up

Export Citation Format

Share Document