Map Building with Mobile Robots for Search and Rescue(Disaster Response Robotics)

2003 ◽  
Vol 106 (1019) ◽  
pp. 811-814
Author(s):  
Masahiro TOMONO ◽  
Shin'ichi YUTA
2008 ◽  
Vol 20 (1) ◽  
pp. 24-37 ◽  
Author(s):  
Chomchana Trevai ◽  
◽  
Norisuke Fujii ◽  
Jun Ota ◽  
Tamio Arai

In this paper, we propose a search and surveillance with mobile robots to collect information while minimizing repeated coverage to maximize efficiency. The problem of search and surveillance is defined as one having a mobile robot or covering a working area with sensor footprints. The problem is applicable to tasks such as floor cleaning, map building, surveillance, security patrols, and search and rescue operations. We use a reaction-diffusion equation on a graph (RDEG), we make and remake plans online base on incoming environmental information. The strategy is applicable to patrolling tasks after an environment has been completely explorated. Tasks are allocated to multiple mobile robots, among which a temporary leader, i.e., the robot detecting a drastic change in the environment, plans a strategy for other mobile robots on the team. Sensing and positioning data for each robot is broadcast and shared among robots. Simulation in different scenarios using one to three robots demonstrated the feasibility of increasing the number of robots on a team.


2002 ◽  
Vol 14 (4) ◽  
pp. 323-323
Author(s):  
Takashi Tsubouchi ◽  
◽  
Keiji Nagatani ◽  

Since the dawning of the Robotics age, mobile robots have been important objectives of research and development. Working from such aspects as locomotion mechanisms, path and motion planning algorithms, navigation, map building and localization, and system architecture, researchers are working long and hard. Despite the fact that mobile robotics has a shorter history than conventional mechanical engineering, it has already accumulated a major, innovative, and rich body of R&D work. Rapid progress in modern scientific technology had advanced to where down-sized low-cost electronic devices, especially highperformance computers, can now be built into such mobile robots. Recent trends in ever higher performance and increased downsizing have enabled those working in the field of mobile robotics to make their models increasingly intelligent, versatile, and dexterous. The down-sized computer systems implemented in mobile robots must provide high-speed calculation for complicated motion planning, real-time image processing in image recognition, and sufficient memory for storing the huge amounts of data required for environment mapping. Given the swift progress in electronic devices, new trends are now emerging in mobile robotics. This special issue on ""Modern Trends in Mobile Robotics"" provides a diverse collection of distinguished papers on modern mobile robotics research. In the area of locomotion mechanisms, Huang et al. provide an informative paper on control of a 6-legged walking robot and Fujiwara et al. contribute progressive work on the development of a practical omnidirectional cart. Given the importance of vision systems enabling robots to survey their environments, Doi et al., Tang et al., and Shimizu present papers on cutting-edge vision-based navigation. On the crucial subject of how to equip robots with intelligence, Hashimoto et al. present the latest on sensor fault detection in dead-reckoning, Miura et al. detail the probabilistic modeling of obstacle motion during mobile robot navigation, Hada et al. treat long-term mobile robot activity, and Lee et al. explore mobile robot control in intelligent space. As guest editors, we are sure readers will find these articles both informative and interesting concerning current issues and new perspectives in modern trends in mobile robotics.


Robotica ◽  
2019 ◽  
Vol 38 (2) ◽  
pp. 350-373 ◽  
Author(s):  
Hongling Wang ◽  
Chengjin Zhang ◽  
Yong Song ◽  
Bao Pang ◽  
Guangyuan Zhang

SummaryConventional simultaneous localization and mapping (SLAM) has concentrated on two-dimensional (2D) map building. To adapt it to urgent search and rescue (SAR) environments, it is necessary to combine the fast and simple global 2D SLAM and three-dimensional (3D) objects of interest (OOIs) local sub-maps. The main novelty of the present work is a method for 3D OOI reconstruction based on a 2D map, thereby retaining the fast performances of the latter. A theory is established that is adapted to a SAR environment, including the object identification, exploration area coverage (AC), and loop closure detection of revisited spots. Proposed for the first is image optical flow calculation with a 2D/3D fusion method and RGB-D (red, green, blue + depth) transformation based on Joblove–Greenberg mathematics and OpenCV processing. The mathematical theories of optical flow calculation and wavelet transformation are used for the first time to solve the robotic SAR SLAM problem. The present contributions indicate two aspects: (i) mobile robots depend on planar distance estimation to build 2D maps quickly and to provide SAR exploration AC; (ii) 3D OOIs are reconstructed using the proposed innovative methods of RGB-D iterative closest points (RGB-ICPs) and 2D/3D principle of wavelet transformation. Different mobile robots are used to conduct indoor and outdoor SAR SLAM. Both the SLAM and the SAR OOIs detection are implemented by simulations and ground-truth experiments, which provide strong evidence for the proposed 2D/3D reconstruction SAR SLAM approaches adapted to post-disaster environments.


2019 ◽  
Vol 16 (4) ◽  
pp. 172988141986038
Author(s):  
Huang Yiqing ◽  
Wang Hui ◽  
Wei Lisheng ◽  
Gao Wengen ◽  
Ge Yuan

This article presented a cooperative mapping technique using a novel edge gradient algorithm for multiple mobile robots. The proposed edge gradient algorithm can be divided into four behaviors such as adjusting the movement direction, evaluating the safety of motion behavior, following behavior, and obstacle information exchange, which can effectively prevent multiple mobile robots falling into concave obstacle areas. Meanwhile, a visual field factor is constructed based on biological principles so that the mobile robots can have a larger field of view when moving away from obstacles. Also, the visual field factor will be narrowed due to the obstruction of the obstacle when approaching an obstacle and the obtained map-building data are more accurate. Finally, three sets of simulation and experimental results demonstrate the performance superiority of the presented algorithm.


2003 ◽  
Vol 22 (12) ◽  
pp. 1019-1039 ◽  
Author(s):  
Alessandro Corrêa Victorino ◽  
Patrick Rives ◽  
Jean-Jacques Borrelly

Robotica ◽  
2009 ◽  
Vol 28 (3) ◽  
pp. 465-475 ◽  
Author(s):  
Edith Heußlein ◽  
Blair W. Patullo ◽  
David L. Macmillan

SUMMARYBiomimetic applications play an important role in informing the field of robotics. One aspect is navigation – a skill automobile robots require to perform useful tasks. A sub-area of this is search strategies, e.g. for search and rescue, demining, exploring surfaces of other planets or as a default strategy when other navigation mechanisms fail. Despite that, only a few approaches have been made to transfer biological knowledge of search mechanisms on surfaces along the ground into biomimetic applications. To provide insight for robot navigation strategies, this study describes the paths a crayfish used to explore terrain. We tracked movement when different sets of sensory input were available. We then tested this algorithm with a computer model crayfish and concluded that the movement of C. destructor has a specialised walking strategy that could provide a suitable baseline algorithm for autonomous mobile robots during navigation.


2011 ◽  
Vol 28 (3) ◽  
pp. 373-387 ◽  
Author(s):  
Keiji Nagatani ◽  
Yoshito Okada ◽  
Naoki Tokunaga ◽  
Seiga Kiribayashi ◽  
Kazuya Yoshida ◽  
...  

2019 ◽  
Vol 24 (3-4) ◽  
pp. 7-16
Author(s):  
Koval A. ◽  
◽  

Today, the problem of virtual design, modeling and testing of mobile robots prior to their direct implementation «in the metal» is quite urgent. The article reviews the technologies used for this purpose and discusses the approach to creating specialized software complexes aimed at solving existing problems in existing technologies. The concept of the program is proposed for modeling problems of structure and behavior of mobile robots with elements of artificial intelligence, intended to support search and rescue operations in a combination of environments (air, ground, underwater) and for the professional training of relevant specialists.


Sign in / Sign up

Export Citation Format

Share Document