scholarly journals High Temperature Corrosion of Materials for Gas Turbine by Residual-Oil Combustion Gas(Minor Special Issue on Latest Power Plants)

1970 ◽  
Vol 73 (615) ◽  
pp. 547-553
Author(s):  
Eiichi ISHIBASHI ◽  
Azuma NAKAOKA ◽  
Isao SATO
1960 ◽  
Vol 82 (3) ◽  
pp. 169-178 ◽  
Author(s):  
R. J. Zoschak ◽  
R. W. Bryers

To permit the use of high-vanadium residual oil as fuel for combined super-charged-boiler gas-turbine power plants, it is necessary to determine the treatment required to prevent the high-temperature corrosion and deposit problems associated with this fuel. A test program has been undertaken wherein a number of magnesium and aluminum-bearing additives have been injected into washed residual oil when firing a laboratory-scale, simulated supercharged boiler. Different tube arrangements within the boiler have been tried. Ash collected on the tubes at various locations has been analyzed and its corrosive effect at high temperatures on some types of stainless steel has been evaluated. The results thus far obtained are presented together with some hypotheses regarding the formation of deposits.


1970 ◽  
Vol 13 (66) ◽  
pp. 1495-1503
Author(s):  
Eiichi ISHIBASHI ◽  
Azuma NAKAOKA ◽  
Isao SATOH

Author(s):  
Dieter Bohn ◽  
Nathalie Po¨ppe ◽  
Joachim Lepers

The present paper reports a detailed technological assessment of two concepts of integrated micro gas turbine and high temperature (SOFC) fuel cell systems. The first concept is the coupling of micro gas turbines and fuel cells with heat exchangers, maximising availability of each component by the option for easy stand-alone operation. The second concept considers a direct coupling of both components and a pressurised operation of the fuel cell, yielding additional efficiency augmentation. Based on state-of-the-art technology of micro gas turbines and solid oxide fuel cells, the paper analyses effects of advanced cycle parameters based on future material improvements on the performance of 300–400 kW combined micro gas turbine and fuel cell power plants. Results show a major potential for future increase of net efficiencies of such power plants utilising advanced materials yet to be developed. For small sized plants under consideration, potential net efficiencies around 70% were determined. This implies possible power-to-heat-ratios around 9.1 being a basis for efficient utilisation of this technology in decentralised CHP applications.


2019 ◽  
Vol 28 (8) ◽  
pp. 1789-1850 ◽  
Author(s):  
Esmaeil Sadeghi ◽  
Nicolaie Markocsan ◽  
Shrikant Joshi

Abstract High-temperature corrosion of critical components such as water walls and superheater tubes in biomass/waste-fired boilers is a major challenge. A dense and defect-free thermal spray coating has been shown to be promising to achieve a high electrical/thermal efficiency in power plants. The field of thermal spraying and quality of coatings have been progressively evolving; therefore, a critical assessment of our understanding of the efficacy of coatings in increasingly aggressive operating environments of the power plants can be highly educative. The effects of composition and microstructure on high-temperature corrosion behavior of the coatings were discussed in the first part of the review. The present paper that is the second part of the review covers the emerging research field of performance assessment of thermal spray coatings in harsh corrosion-prone environments and provides a comprehensive overview of the underlying high-temperature corrosion mechanisms that lead to the damage of exposed coatings. The application of contemporary analytical methods for better understanding of the behavior of corrosion-resistant coatings is also discussed. A discussion based on an exhaustive review of the literature provides an unbiased commentary on the advanced accomplishments and some outstanding issues in the field that warrant further research. An assessment of the current status of the field, the gaps in the scientific understanding, and the research needs for the expansion of thermal spray coatings for high-temperature corrosion applications is also provided.


Author(s):  
Narihito Nakagawa ◽  
Hideki Ohtsubo ◽  
Kohji Shibata ◽  
Atsuyuki Mitani ◽  
Kazutoshi Shimizu ◽  
...  

Melt growth composites (MGCs) have a unique microstructure, in which continuous networks of single-crystal phases interpenetrate without grain boundaries. Therefore, the MGCs have excellent high-temperature strength characteristics, creep resistance, oxidation resistance and thermal stability in an air atmosphere at very high temperature. To achieve ultra-high thermal efficiency and low NOx emission for gas turbine systems, non-cooled turbine nozzle vanes and heat shield panels of combustor liners has been fabricated on an experimental basis. These components are thermally stable after heat treatment at 1700°C for 1000 hours in an air atmosphere. In addition, we have just started the exposure tests to evaluate the influence of combustion gas flow environment on MGCs.


1995 ◽  
Vol 117 (2) ◽  
pp. 245-250 ◽  
Author(s):  
K. Nakakado ◽  
T. Machida ◽  
H. Miyata ◽  
T. Hisamatsu ◽  
N. Mori ◽  
...  

Employing ceramic materials for the critical components of industrial gas turbines is anticipated to improve the thermal efficiency of power plants. We developed a first-stage stator vane for a 1300°C class, 20-MW industrial gas turbine. This stator vane has a hybrid ceramic/metal structure, to increase the strength reliability of brittle ceramic parts, and to reduce the amount of cooling air needed for metal parts as well. The strength design results of a ceramic main part are described. Strength reliability evaluation results are also provided based on a cascade test using combustion gas under actual gas turbine running conditions.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Arnold Gad-Briggs ◽  
Emmanuel Osigwe ◽  
Pericles Pilidis ◽  
Theoklis Nikolaidis ◽  
Suresh Sampath ◽  
...  

Abstract Numerous studies are on-going on to understand the performance of generation IV (Gen IV) nuclear power plants (NPPs). The objective is to determine optimum operating conditions for efficiency and economic reasons in line with the goals of Gen IV. For Gen IV concepts such as the gas-cooled fast reactors (GFRs) and very-high temperature reactors (VHTRs), the choice of cycle configuration is influenced by component choices, the component configuration and the choice of coolant. The purpose of this paper to present and review current cycles being considered—the simple cycle recuperated (SCR) and the intercooled cycle recuperated (ICR). For both cycles, helium is considered as the coolant in a closed Brayton gas turbine configuration. Comparisons are made for design point (DP) and off-design point (ODP) analyses to emphasize the pros and cons of each cycle. This paper also discusses potential future trends, include higher reactor core outlet temperatures (COT) in excess of 1000 °C and the simplified cycle configurations.


Sign in / Sign up

Export Citation Format

Share Document