S042011 Evaluation of oxidation resistance of ZrB_2-SiC-ZrC : Ultra high temperature materials using above 2000K

2013 ◽  
Vol 2013 (0) ◽  
pp. _S042011-1-_S042011-4
Author(s):  
Yutaro ARAI ◽  
Masashi ISHIKAWA ◽  
Yasuo KOGO ◽  
Shu-qi GUO ◽  
Ken GOTO ◽  
...  
2008 ◽  
Vol 202 (18) ◽  
pp. 4394-4398 ◽  
Author(s):  
Mario Tului ◽  
Stefano Lionetti ◽  
Giovanni Pulci ◽  
Elviro Rocca ◽  
Teodoro Valente ◽  
...  

2021 ◽  
Author(s):  
Anindya Ghoshal ◽  
Michael J. Walock ◽  
Andy Nieto ◽  
Muthuvel Murugan ◽  
Clara Hofmeister-Mock ◽  
...  

Abstract Ultra high temperature ceramic (UHTC) materials have attracted attention for hypersonic applications. Currently there is significant interest in possible gas turbine engine applications of UHTC composites as well. However, many of these materials, such as hafnium carbide, zirconium carbide, and zirconium diboride, have significant oxidation resistance and toughness limitations. In addition, these materials are very difficult to manufacture because of their high melting points. In many cases, SiC powder is incorporated into UHTCs to aid in processing and to enhance fracture toughness. This can also improve the materials’ oxidation resistance at moderately high temperatures due to a crack-healing borosilicate phase. ZrB2-SiC composites show very good oxidation resistance up to 1700 °C, due to the formation of SiO2 and ZrO2 scales in numerous prior studies. While this may limit its application to hypersonic applications (due to reduced thermal conductivity and oxidation resistance at higher temperatures), these UHTC-SiC composites may find applications in turbomachinery, as either stand-alone parts or as a component in a multi-layer system. The US Army Research Laboratory (ARL), the Naval Postgraduate School (NPS), and the University of California – San Diego (UCSD) are developing tough UHTC composites with high durability and oxidation resistance. For this paper, UHTC-SiC composites and high-entropy fluorite oxides were developed using planetary and high-energy ball milling and consolidated using spark plasma sintering. These materials were evaluated for their oxidation-resistance, ablation-resistance, and thermal cycling behavior under a DoD/OSD-funded Laboratory University Collaborative Initiative (LUCI) Fellowship and DoD Vannevar Bush Fellowship Program. In the present paper experimental results and post-test material characterization of SPS sintered ZrB2, ZrB2+SiC, ZrB2+SiC+HfC, HfC+SiC, and HfC+ZrB2 pellets subjected to ablation test are presented.


2007 ◽  
Vol 14 (05) ◽  
pp. 945-950 ◽  
Author(s):  
J. G. SONG ◽  
J. G. LI ◽  
J. R. SONG ◽  
L. M. ZHANG

Although ZrB 2 has some excellent performances, it is easily oxidized in the high-temperature air, which is deadly shortcoming as high-temperature materials. To increase the high-temperature performances of ZrB 2, Al 2 O 3 and Y 2 O 3 particles are coated on the ZrB 2 surface to prepare ZrB 2– Al 2 O 3– Y 2 O 3 composite particles. The oxidation resistance mechanism of ZrB 2– Al 2 O 3– Y 2 O 3 composite particles is investigated by DTA-TG, TEM, and XRD. The surface of ZrB 2 particle is coated with compact Al 2 O 3 and Y 2 O 3 particles, which establishes the foundation to attain good oxidation resistance. ZrB 2 particle is mainly oxidized to increase the weight, from 600°C to 800°C. B 2 O 3, obtained through the oxidization reaction, might coat on the surface of ZrB 2 particle to retard the oxidization reaction, which further increases the oxidation resistance. The oxidation resistance of coated ZrB 2 particle is far better than that of original ZrB 2 particle.


2015 ◽  
Vol 830-831 ◽  
pp. 421-424
Author(s):  
T. Venkateswaran ◽  
M. Agilan ◽  
D. Sivakumar ◽  
Bhanu Pant

Transition metal diborides, especially zirconium and hafnium diboride are potential ceramic material for ultra high temperature applications above 1800°C. These borides are characterized by high melting point, formation of high melting point oxides, good oxidation resistance and excellent thermo-mechanical properties. In this present exploration, zirconium diboride (ZrB2) has been selected for its moderate density (6.09 gm/cc) and better oxidation resistance compared to high density hafnium diboride (11.2 gm/cc). The developed ZrB2 composite in the present study contains 10 wt. % SiC and 10 wt. % MoSi2 as sintering additives. SiC and MoSi2 were added to improve the thermal shock resistance and sinterability of the ultra high temperature ceramics (UHTCs). Vacuum hot pressing was carried out at 1800°C for a holding period of 30 minutes and applied pressure of 30 MPa. Attractive feature of this ZrB2 composite is good machinability due to better electrical conductivity and complicated shapes can be realized easily through electro discharge machining (EDM) process. Detailed XRD phase analysis and microstructural investigation of the polished and fractured composites was carried out using SEM. Mechanical and thermal properties tests have been carried out for the optimized ZrB2 composite material.


2007 ◽  
Vol 14 (03) ◽  
pp. 445-449 ◽  
Author(s):  
JIE-GUANG SONG ◽  
LIAN-MENG ZHANG ◽  
JUN-GUO LI ◽  
JIAN-RONG SONG

Zirconium diboride is widely applied to high-temperature materials, but it is easily oxidized at high temperature. To increase the oxidation resistance of zirconium diboride at high temperature, the A 1( OH )3– Y ( OH )3 is coated on the ZrB 2 surface to prepare A 1( OH )3– Y ( OH )3/ ZrB 2 composite particles. In this paper, the effect of coating content on the properties of A 1( OH )3– Y ( OH )3/ ZrB 2 composite particles is investigated. It is analyzed that the particle size and particle size distribution of A 1( OH )3– Y ( OH )3/ ZrB 2 composite particles is increased with the coating content. The dispersion of ZrB 2 particles is largely increased with the coating content of 0%–20%; the dispersion of ZrB 2 particles is similar when the coating content is from 20% to 30%. The oxidation resistance ratio of the ZrB 2 particles with 30% coating content is the best than that of other conditions—it is about three times more than that of the original ZrB 2 particles.


Sign in / Sign up

Export Citation Format

Share Document