Experimental Analysis and Material Characterization of Ultra High Temperature Composites

2021 ◽  
Author(s):  
Anindya Ghoshal ◽  
Michael J. Walock ◽  
Andy Nieto ◽  
Muthuvel Murugan ◽  
Clara Hofmeister-Mock ◽  
...  

Abstract Ultra high temperature ceramic (UHTC) materials have attracted attention for hypersonic applications. Currently there is significant interest in possible gas turbine engine applications of UHTC composites as well. However, many of these materials, such as hafnium carbide, zirconium carbide, and zirconium diboride, have significant oxidation resistance and toughness limitations. In addition, these materials are very difficult to manufacture because of their high melting points. In many cases, SiC powder is incorporated into UHTCs to aid in processing and to enhance fracture toughness. This can also improve the materials’ oxidation resistance at moderately high temperatures due to a crack-healing borosilicate phase. ZrB2-SiC composites show very good oxidation resistance up to 1700 °C, due to the formation of SiO2 and ZrO2 scales in numerous prior studies. While this may limit its application to hypersonic applications (due to reduced thermal conductivity and oxidation resistance at higher temperatures), these UHTC-SiC composites may find applications in turbomachinery, as either stand-alone parts or as a component in a multi-layer system. The US Army Research Laboratory (ARL), the Naval Postgraduate School (NPS), and the University of California – San Diego (UCSD) are developing tough UHTC composites with high durability and oxidation resistance. For this paper, UHTC-SiC composites and high-entropy fluorite oxides were developed using planetary and high-energy ball milling and consolidated using spark plasma sintering. These materials were evaluated for their oxidation-resistance, ablation-resistance, and thermal cycling behavior under a DoD/OSD-funded Laboratory University Collaborative Initiative (LUCI) Fellowship and DoD Vannevar Bush Fellowship Program. In the present paper experimental results and post-test material characterization of SPS sintered ZrB2, ZrB2+SiC, ZrB2+SiC+HfC, HfC+SiC, and HfC+ZrB2 pellets subjected to ablation test are presented.

2012 ◽  
Vol 710 ◽  
pp. 308-313 ◽  
Author(s):  
Suresh Telu ◽  
Vaduganathan Karthik ◽  
Rahul Mitra ◽  
Shyamal Kumar Pabi

The effect of 10 at.% Nb on the sintering and high temperature oxidation behavior of W0.5Cr0.5alloy was investigated. Elemental powder blends were made nanostructured by high energy mechanical milling, compacted and finally sintered under reduced atmosphere at 1790°C. The sintered samples were subjected to cyclic isothermal oxidation tests at 800°C to 1200°C in air. The experimental results shows superior sinterability and oxidation protection of W0.5Cr0.5alloy compared to pure W. Characterization of the oxide scales shows porous external W-rich oxide (WO3) formation which is not ideally suitable for oxidation resistance. On the other hand, W-Cr alloy with 10 at.% Nb shows the remarkable sinter densification (~98%) and oxidation resistance up to 1200°C. The oxide scale of the ternary alloy shows formation of stable Cr2O3, Nb2O5oxides and/or complex Cr-Nb oxide (CrNbO4), and there was no evidence of WO3formation in this case.


2021 ◽  
Author(s):  
STEFANO MUNGIGUERRA ◽  
ANSELMO CECERE ◽  
RAFFAELE SAVINO

The most extreme aero-thermo-dynamic conditions encountered in aerospace applications include those of atmospheric re-entry, characterized by hypersonic Mach numbers, high temperatures and a chemically reacting environment, and of rocket propulsion, in which a combusting, high-pressure, supersonic flow can severely attack the surfaces of the motor internal components (particularly nozzle throats), leading to thermo-chemical erosion and consequent thrust decrease. For these applications, Ultra-High-Temperature Ceramics (UHTC), namely transition metal borides and carbides, are regarded as promising candidates, due to their excellent high-temperature properties, including oxidation and ablation resistance, which are boosted by the introduction of secondary phases, such as silicon carbide and carbon fibers reinforcement (in the so-called Ultra-High- Temperature Ceramic Matrix Composites, UHTCMC). The recent European H2020 C3HARME research project was devoted to development and characterization of new-class UHTCMCs for near-zero ablation thermal protection systems for re-entry vehicles and near-zero erosion rocket nozzles. Within the frame of the project and in collaboration with several research institutions and private companies, research activities at the University of Naples “Federico II” (UNINA) focused on requirements definition, prototypes design and test conditions identification, with the aim to increase the Technology Readiness Level (TRL) of UHTCMC up to 6. Experimental tests were performed with two facilities: an arc-jet plasma wind tunnel, where small specimens were characterized in a relevant atmospheric re-entry environment (Fig.1a), and a lab-scale hybrid rocket engine, where material testing was performed with different setups, up to complete nozzle tests, in conditions representative of real propulsive applications (Fig.1b). The characterization of the aero-thermo-chemical response and ablation resistance of different UHTCMC formulations was supported by numerical computations of fluiddynamic flowfields and materials thermal behavior. The UNINA activities provided a large database supporting the achievement of the project objectives, with development and testing of full-scale TPS assemblies and a large-size solid rocket nozzle.


2008 ◽  
Vol 202 (18) ◽  
pp. 4394-4398 ◽  
Author(s):  
Mario Tului ◽  
Stefano Lionetti ◽  
Giovanni Pulci ◽  
Elviro Rocca ◽  
Teodoro Valente ◽  
...  

Rare Metals ◽  
2019 ◽  
Author(s):  
Jie Xiao ◽  
Hua-Yue Zhang ◽  
Sheng-Kai Gong ◽  
Hui-Bin Xu ◽  
Hong-Bo Guo

2013 ◽  
Vol 745-746 ◽  
pp. 636-641 ◽  
Author(s):  
Ning Li ◽  
Ping Hu ◽  
Xing Hong Zhang ◽  
Wen Bo Han

This paper presented the application of microwave-discharge plasma apparatus which was used to evaluate the catalytic properties of ZrB2-based ultra-high temperature ceramics in the simulated real service environment by the wall temperature response method based on the heat balance principle. The results showed that the material composition had a significant influence on the catalytic properties of ZrB2-based ultra-high temperature ceramics, and the catalytic activity of ZrB2-SiC composites with Cr addition had been increased significantly. The relationship between catalytic properties of ZrB2-based ultra-high temperature ceramics and surface composition was discussed in detail. The composition optimization was considered to be a very effective way to inhibit the recombination reactions of dissociated atoms on the surface of ultra-high temperature ceramics.


2013 ◽  
Vol 2013 (0) ◽  
pp. _S042011-1-_S042011-4
Author(s):  
Yutaro ARAI ◽  
Masashi ISHIKAWA ◽  
Yasuo KOGO ◽  
Shu-qi GUO ◽  
Ken GOTO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document