Unveiling enhanced oxidation resistance and mechanical integrity of multi‐component ultra‐high temperature carbides

Author(s):  
Ambreen Nisar ◽  
Tyler Dolmetsch ◽  
Tanaji Paul ◽  
Tamil Selvan Sakthivel ◽  
Cheng Zhang ◽  
...  
2008 ◽  
Vol 202 (18) ◽  
pp. 4394-4398 ◽  
Author(s):  
Mario Tului ◽  
Stefano Lionetti ◽  
Giovanni Pulci ◽  
Elviro Rocca ◽  
Teodoro Valente ◽  
...  

2021 ◽  
Author(s):  
Anindya Ghoshal ◽  
Michael J. Walock ◽  
Andy Nieto ◽  
Muthuvel Murugan ◽  
Clara Hofmeister-Mock ◽  
...  

Abstract Ultra high temperature ceramic (UHTC) materials have attracted attention for hypersonic applications. Currently there is significant interest in possible gas turbine engine applications of UHTC composites as well. However, many of these materials, such as hafnium carbide, zirconium carbide, and zirconium diboride, have significant oxidation resistance and toughness limitations. In addition, these materials are very difficult to manufacture because of their high melting points. In many cases, SiC powder is incorporated into UHTCs to aid in processing and to enhance fracture toughness. This can also improve the materials’ oxidation resistance at moderately high temperatures due to a crack-healing borosilicate phase. ZrB2-SiC composites show very good oxidation resistance up to 1700 °C, due to the formation of SiO2 and ZrO2 scales in numerous prior studies. While this may limit its application to hypersonic applications (due to reduced thermal conductivity and oxidation resistance at higher temperatures), these UHTC-SiC composites may find applications in turbomachinery, as either stand-alone parts or as a component in a multi-layer system. The US Army Research Laboratory (ARL), the Naval Postgraduate School (NPS), and the University of California – San Diego (UCSD) are developing tough UHTC composites with high durability and oxidation resistance. For this paper, UHTC-SiC composites and high-entropy fluorite oxides were developed using planetary and high-energy ball milling and consolidated using spark plasma sintering. These materials were evaluated for their oxidation-resistance, ablation-resistance, and thermal cycling behavior under a DoD/OSD-funded Laboratory University Collaborative Initiative (LUCI) Fellowship and DoD Vannevar Bush Fellowship Program. In the present paper experimental results and post-test material characterization of SPS sintered ZrB2, ZrB2+SiC, ZrB2+SiC+HfC, HfC+SiC, and HfC+ZrB2 pellets subjected to ablation test are presented.


2013 ◽  
Vol 2013 (0) ◽  
pp. _S042011-1-_S042011-4
Author(s):  
Yutaro ARAI ◽  
Masashi ISHIKAWA ◽  
Yasuo KOGO ◽  
Shu-qi GUO ◽  
Ken GOTO ◽  
...  

2015 ◽  
Vol 830-831 ◽  
pp. 421-424
Author(s):  
T. Venkateswaran ◽  
M. Agilan ◽  
D. Sivakumar ◽  
Bhanu Pant

Transition metal diborides, especially zirconium and hafnium diboride are potential ceramic material for ultra high temperature applications above 1800°C. These borides are characterized by high melting point, formation of high melting point oxides, good oxidation resistance and excellent thermo-mechanical properties. In this present exploration, zirconium diboride (ZrB2) has been selected for its moderate density (6.09 gm/cc) and better oxidation resistance compared to high density hafnium diboride (11.2 gm/cc). The developed ZrB2 composite in the present study contains 10 wt. % SiC and 10 wt. % MoSi2 as sintering additives. SiC and MoSi2 were added to improve the thermal shock resistance and sinterability of the ultra high temperature ceramics (UHTCs). Vacuum hot pressing was carried out at 1800°C for a holding period of 30 minutes and applied pressure of 30 MPa. Attractive feature of this ZrB2 composite is good machinability due to better electrical conductivity and complicated shapes can be realized easily through electro discharge machining (EDM) process. Detailed XRD phase analysis and microstructural investigation of the polished and fractured composites was carried out using SEM. Mechanical and thermal properties tests have been carried out for the optimized ZrB2 composite material.


2009 ◽  
Vol 61 (7) ◽  
pp. 697-700 ◽  
Author(s):  
Guiqing Chen ◽  
Rubing Zhang ◽  
Ping Hu ◽  
Wenbo Han

2012 ◽  
Vol 512-515 ◽  
pp. 735-738 ◽  
Author(s):  
Jie Guang Song ◽  
Fang Wang ◽  
Ming Han Xu ◽  
Shi Bin Li ◽  
Gang Chang Ji

ZrB2 belongs to a class of ceramics defined ultra-high-temperature ceramics with extremely high melting temperatures, but ZrB2 ceramics is difficultly sintered and easily oxidized. To make ZrB2 ceramics possess the high relative density and the better oxidation resistance. The effects of adding phase on the sintering and oxidation resistance mechanism of ZrB2 based high-temperature multi-phase ceramics were investigated. YAG and Al2O3 help for the densification of ZrB2 based ceramics. The oxidation layer thickness of sintered ceramics adding YAG or YAG-Al2O3 phase is thinner than that of sintered pure ZrB2 ceramics under the same oxidation condition, the oxidation layer thickness of sintered ceramics adding YAG-Al2O3 phase is thinner than that of sintered ceramics adding YAG phase, the oxidation layer thickness of sintered ceramics is decreased with an increased Al2O3 content.


Sign in / Sign up

Export Citation Format

Share Document