Analysis for Anisotropic Elastic Body with Two Elliptical Holes Subjected to In-Plane and Out-of-Plane Shear Loadings

2018 ◽  
Vol 2018 (0) ◽  
pp. J0450204
Author(s):  
Takeshi TANE ◽  
Toru SASAKI ◽  
Mutsumi Miyagawa ◽  
Masashi KUROSE ◽  
Kiyokazu KIMURA
2021 ◽  
pp. 152808372110017
Author(s):  
Zhipeng Qu ◽  
Houdi Xiao ◽  
Mingyun Lv

This paper presents a transversely hyperelastic constitutive model for predicting mechanical properties of flexible composites under unidirectional tension. A strain energy function which reflects the behavior of anisotropic elastic material is decomposed into three parts: matrix, fiber and fiber-matrix interaction. The fiber-matrix interaction was decomposed into in-plane shear stresses and out-of-plane shear stress, the in-plane shear stresses were related to the fiber elongation invariants, and the out-of-plane shear stress was related to the fiber elongation invariants and the matrix invariants. The fiber-matrix interaction considering shear factor was established. Based on fiber reinforced continuum mechanics, a transverse hyperelastic constitutive model including fiber, matrix and their interaction is developed. The transversely hyperelastic constitutive model is verified by the uniaxial tension tests. The constitutive model can be used to design the flexible structure of stratospheric airship.


2013 ◽  
Vol 564 ◽  
pp. 37-40 ◽  
Author(s):  
Balázs Hajgató ◽  
Songül Güryel ◽  
Yves Dauphin ◽  
Jean-Marie Blairon ◽  
Hans E. Miltner ◽  
...  

PAMM ◽  
2007 ◽  
Vol 7 (1) ◽  
pp. 1090801-1090802
Author(s):  
A.-M. Sändig ◽  
A. Lalegname ◽  
S. Nicaise

2021 ◽  
Vol 881 ◽  
pp. 149-156
Author(s):  
Mochamad Teguh ◽  
Novi Rahmayanti ◽  
Zakki Rizal

Building material innovations in various interlocking concrete block masonry from local materials to withstand lateral earthquake forces is an exciting issue in masonry wall research. The block hook has an advantage in the interlocking system's invention to withstand loads in the in-plane and out-of-plane orientations commonly required by the masonry walls against earthquake forces. Reviews of the investigation of in-plane and out-of-plane masonry walls have rarely been found in previous studies. In this paper, the results of a series of experimental tests with different interlocking models in resisting the simultaneous in-plane shear and out-of-plane bending actions on concrete blocks are presented. This paper presents a research investigation of various interlocking concrete blocks' mechanical properties with different hook thicknesses. Discussion of the trends mentioned above and their implications towards interlocking concrete block mechanical properties is provided.


Author(s):  
Yoshimichi Kawai ◽  
Shigeaki Tohnai ◽  
Shinichiro Hashimoto ◽  
Atsushi Sato ◽  
Tetsuro Ono

<p>Steel sheet shear walls with cold formed edge stiffened burring holes are applied to low- to mid-rise housings in seismically active and typhoon- or hurricane-prone regions. A configuration with burrs on the inside and smooth on the outside enables the construction of omitting the machining of holes for equipments and thinner walls with simplified attachments of finishings. In-plane shear experiments and finite element analyses revealed that the walls allowed shear stress to concentrate in intervals between the burring holes. The walls maintained stable shear load and large deformation behavior, and the deformation areas were limited in the intervals and a large out-of-plane waveform in a sheet was effectively prevented owing to edge stiffened burring ribs. The design methods are developed for evaluating the shear load of the walls at story angle from zero to 1/100, using the idea of decreasing the band width of the inclined tension fields on the intervals with the effects of the thickness.</p>


Sign in / Sign up

Export Citation Format

Share Document