Influence of heat source in a pipe on an upstream-acoustic-boundary condition

2018 ◽  
Vol 2018 (0) ◽  
pp. J1020202
Author(s):  
Dan NANNO ◽  
Kan MITANI ◽  
Akane UEMICHI ◽  
Shigehiko KANEKO
2021 ◽  
Author(s):  
Sangita Pimpare ◽  
Chandrashekhar Shalik Sutar ◽  
Kamini Chaudhari

Abstract In the proposed research work we have used the Gaussian circular heat source. This heat source is applied with the heat flux boundary condition along the thickness of a circular plate with a nite radius. The research work also deals with the formulation of unsteady-state heat conduction problems along with homogeneous initial and non-homogeneous boundary condition around the temperature distribution in the circular plate. The mathematical model of thermoelasticity with the determination of thermal stresses and displacement has been studied in the present work. The new analytical method, Reduced Differential Transform has been used to obtain the solution. The numerical results are shown graphically with the help of mathematical software SCILAB and results are carried out for the material copper.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Yang Zhou ◽  
Cheng Xu ◽  
David Sego ◽  
Dong-hai Zhang

Abstract The energy pile technology has been widely used, and the solid cylindrical heat source (SCS) model is usually adopted to describe the heat transfer process between the energy pile and the surrounding soil. This paper investigates the SCS model with a convective boundary condition (SCS-3 model), and realistic conditions such as transversely isotropic ground and groundwater flow are all included in the model. An analytical solution for the problem is established using Green's function method and the theory of moving heat sources. Solutions for the SCS model with a boundary condition of the first kind (SCS-1 model) and for the line source (LS) model with a convective boundary condition (LS-3 model) are recovered as special cases of the solution in this paper. Computational examples are presented, and comparisons between different models are made. First, the SCS-1 model is compared with the SCS-3 model, showing the error caused by neglecting the surface convective effect. Second, the LS-3 model is compared with the SCS-3 model, showing the error associated with neglecting the size of heat source. The effects of groundwater flow velocity and convective heat transfer coefficient on the temporal and spatial variations of these errors are also investigated.


Author(s):  
Carlos Chiquete ◽  
Anatoli Tumin

A stability analysis is carried out taking into account slightly porous walls in an idealized detonation confined to a circular pipe. The analysis is carried out using the normal-mode approach and corrections are obtained to the underlying impenetrable wall case results to account for the effect of the slight porosity. The porous walls are modelled by an acoustic boundary condition for the perturbations linking the normal velocity and the pressure components and thus replacing the conventional no-penetration boundary condition at the wall. This new boundary condition necessarily complicates the derivation of the stability problem with respect to the impenetrable wall case. However, exploiting the expressly slight porosity, the modified temporal stability can be determined as a two-point boundary value problem similar to the case of a non-porous wall.


Author(s):  
Dmytro Baidiuk ◽  
Lassi Paunonen

AbstractIn this paper we present new results on the preservation of polynomial stability of damped wave equations under addition of perturbing terms. We in particular introduce sufficient conditions for the stability of perturbed two-dimensional wave equations on rectangular domains, a one-dimensional weakly damped Webster’s equation, and a wave equation with an acoustic boundary condition. In the case of Webster’s equation, we use our results to compute explicit numerical bounds that guarantee the polynomial stability of the perturbed equation.


Sign in / Sign up

Export Citation Format

Share Document