Influence of NC Control System on S-shaped Machining Accuracy of Five-axis Machining Center

2018 ◽  
Vol 2018 (0) ◽  
pp. S1310003
Author(s):  
Zongze LI ◽  
Ryuta SATO ◽  
Keiichi SHIRASE ◽  
Yukitoshi IHARA
Author(s):  
Zongze Li ◽  
Ryuta Sato ◽  
Keiichi Shirase ◽  
Yukitoshi Ihara

Abstract Five-axis machining center, combined three linear and two rotary axes, has been increasingly used in complex surface machining. However, as the two additional axes, the machined surface under table coordinate system is usually different from the tool motion under machine coordinate system, and as a result, it is very tough to predict the machined shape errors caused by each axes error motions. This research presents a new kind of sensitivity analysis method, to find the relationship between error motions of each axis and geometric errors of machined shape directly. In this research, the S-shaped machining test is taken as a sample to explain how the sensitivity analysis makes sense. The results show that the presented sensitivity analysis can investigate how the error motions affect the S-shaped machining accuracy and predicted the influence of error motions on certain positions, such as the reversal errors of the axes around motion reversal points. It can be proved that the presented method can help the five-axis machining center users to predict the machining errors on the designed surface of each axes error motions.


2013 ◽  
Vol 313-314 ◽  
pp. 1135-1138
Author(s):  
Xing Guo Liu ◽  
Chi Gang Deng ◽  
Yu Hang Liu ◽  
Qing Ying Zhao

Five-axis linkage CNC Machining CenterXH756 has five axis -- X, Y, Z, A, B, can achieve five axis linkage processing function, is the most ideal equipment of processing space curve CAM, cylindrical CAM and die. Its numerical control system is M520 of Mitsubishi of Japan. XH756 is most advanced CNC processing equipment with high precision in China now.


2011 ◽  
Vol 141 ◽  
pp. 460-464
Author(s):  
Wei Zhao ◽  
Tedros Alem Hadush ◽  
Qiong Yi He

Research on the post-processing algorithm with the DMC75VLinear 5-axis machining center and Heidenhain iTNC530 numerical control system. The formulae about angles B and C are proposed combined with the instruction of M128.The NC codes gotten from this method had been proved in the DMC75VLinea machine, so the post-processing algorithm is tested correctly and reliably.


Author(s):  
Yuma Maruyama ◽  
Takayuki Akai ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Keiji Ogawa

Recently, a novel manufacturing technology has spread out with a five-axis machining center. It is especially important to keep the surface roughness on an entire machined surface constant. Thus, we proposed a novel method for maintaining a constant feed speed vector at the cutting point between the end-mill tool and the workpiece surface by controlling two linear axes and a rotary axis with a five-axis machining center. In the present report, we focused on machining the combined inner and outer radius curvature and investigating the influence of synchronous control error between the linear axes and rotary axis on the machining accuracy and surface roughness. As a result, we determined that it is possible to suppress sudden change in the synchronous motion error by accurately aligning the motion direction of the linear and rotary axes and the feed speed vector at milling point at the contact point of the inner and outer circles.


2014 ◽  
Vol 610 ◽  
pp. 123-128
Author(s):  
Do Hong Zhao ◽  
Jing Sun ◽  
Ke Zhang ◽  
Yu Hou Wu ◽  
Feng Lu

Nowadays, the equipment for processing special-shaped stone products is developing towards high efficiency, intelligent and multifunction. Based on the features of stone processing technology, a sawing-milling compound machining center with eight axes and double five-axis simultaneous control for special-shaped stone products was designed. The dynamic performance and processing capacity were tested. Research shows that the sawing and milling compound machining in the same horizontal slide saddle is practicable. This machine can realize both vertical and horizontal machining under five-axis simultaneous control, and its machining accuracy is better than the normal industrial standard.


2012 ◽  
Vol 271-272 ◽  
pp. 493-497
Author(s):  
Wei Qing Wang ◽  
Huan Qin Wu

Abstract: In order to determine that the effect of geometric error to the machining accuracy is an important premise for the error compensation, a sensitivity analysis method of geometric error is presented based on multi-body system theory in this paper. An accuracy model of five-axis machine tool is established based on multi-body system theory, and with 37 geometric errors obtained through experimental verification, key error sources affecting the machining accuracy are finally identified by sensitivity analysis. The analysis result shows that the presented method can identify the important geometric errors having large influence on volumetric error of machine tool and is of help to improve the accuracy of machine tool economically.


2011 ◽  
Vol 697-698 ◽  
pp. 129-132 ◽  
Author(s):  
Bing Han ◽  
Cheng Zu Ren ◽  
X.Y. Yang ◽  
Guang Chen

The deflection of Aluminum alloy thin-wall workpiece caused by the milling force leads to additional machining errors and reduces machining accuracy. In this paper, a set of experiments of milling thin-wall workpiece were carried out to study the deflection of thin-wall workpiece. The workpieces, with different types of material and different thicknesses, were machined on CNC machining center. The deflections of workpiece were measured by a three-coordinate measuring machine. Effects of Aluminum alloy material and thickness on deflection are discussed based on the experimental data.


Sign in / Sign up

Export Citation Format

Share Document