Vortex-Induced Vibrations and Lock-in Phenomenon of Bellows Structure Subjected to Fluid Flow

2004 ◽  
Vol 2004.7 (0) ◽  
pp. 77-78
Author(s):  
Masahiro WATANABE ◽  
Kouhei MIZUGUCHI
2004 ◽  
Vol 70 (697) ◽  
pp. 2652-2660
Author(s):  
Masahiro WATANABE ◽  
Kouhei MIZUGUCHI ◽  
Koujirou MOTOMURA ◽  
Nobuyuki KOBAYASHI

Author(s):  
Remi Bourguet ◽  
Michael S. Triantafyllou ◽  
Michael Tognarelli ◽  
Pierre Beynet

The fluid-structure energy transfer of a tensioned beam of length to diameter ratio 200, subject to vortex-induced vibrations in linear shear flow, is investigated by means of direct numerical simulation at three Reynolds numbers, from 110 to 1,100. In both the in-line and cross-flow directions, the high-wavenumber structural responses are characterized by mixed standing-traveling wave patterns. The spanwise zones where the flow provides energy to excite the structural vibrations are located mainly within the region of high current where the lock-in condition is established, i.e. where vortex shedding and cross-flow vibration frequencies coincide. However, the energy input is not uniform across the entire lock-in region. This can be related to observed changes from counterclockwise to clockwise structural orbits. The energy transfer is also impacted by the possible occurrence of multi-frequency vibrations.


2011 ◽  
Vol 677 ◽  
pp. 342-382 ◽  
Author(s):  
REMI BOURGUET ◽  
GEORGE E. KARNIADAKIS ◽  
MICHAEL S. TRIANTAFYLLOU

We investigate the in-line and cross-flow vortex-induced vibrations of a long cylindrical tensioned beam, with length to diameter ratio L/D = 200, placed within a linearly sheared oncoming flow, using three-dimensional direct numerical simulation. The study is conducted at three Reynolds numbers, from 110 to 1100 based on maximum velocity, so as to include the transition to turbulence in the wake. The selected tension and bending stiffness lead to high-wavenumber vibrations, similar to those encountered in long ocean structures. The resulting vortex-induced vibrations consist of a mixture of standing and travelling wave patterns in both the in-line and cross-flow directions; the travelling wave component is preferentially oriented from high to low velocity regions. The in-line and cross-flow vibrations have a frequency ratio approximately equal to 2. Lock-in, the phenomenon of self-excited vibrations accompanied by synchronization between the vortex shedding and cross-flow vibration frequencies, occurs in the high-velocity region, extending across 30% or more of the beam length. The occurrence of lock-in disrupts the spanwise regularity of the cellular patterns observed in the wake of stationary cylinders in shear flow. The wake exhibits an oblique vortex shedding pattern, inclined in the direction of the travelling wave component of the cylinder vibrations. Vortex splittings occur between spanwise cells of constant vortex shedding frequency. The flow excites the cylinder under the lock-in condition with a preferential in-line versus cross-flow motion phase difference corresponding to counter-clockwise, figure-eight orbits; but it damps cylinder vibrations in the non-lock-in region. Both mono-frequency and multi-frequency responses may be excited. In the case of multi-frequency response and within the lock-in region, the wake can lock in to different frequencies at various spanwise locations; however, lock-in is a locally mono-frequency event, and hence the flow supplies energy to the structure mainly at the local lock-in frequency.


2012 ◽  
Vol 204-208 ◽  
pp. 4598-4601
Author(s):  
Jie Li Fan ◽  
Wei Ping Huang

The two-degrees-of-freedom of vortex-induced vibration of circular cylinders is numerically simulated with the software ANSYS/CFX. The VIV characteristic, in the two different conditions (A/D=0.07 and A/D=1.0), is analyzed. When A/D is around 0.07, the amplitude ratio of the cylinder’s VIV between in-line and cross-flow direction in the lock-in is lower than that in the lock-out. The in-line frequency is twice of that in cross-flow direction in the lock-out, but in the lock-in, it is the same as that in cross-flow direction and the same as that of lift force. When A/D is around 1.0, the amplitude ratio of the VIV between in-line and cross-flow in the lock-in is obviously larger than that in the lock-out. Both in the lock-in and in the lock-out, the in-line frequency is twice of that in cross-flow direction.


Author(s):  
Mandar Tabib ◽  
Adil Rasheed ◽  
Franz Georg Fuchs

Flows around a fixed cylinder with uniform and pulsating inflow conditions at different Reynolds numbers are simulated using Large Eddy Simulation (LES). For pulsating inflow, a sinusoidal profile, with an amplitude ΔU and a pulsation frequency fe, is superimposed onto the mean velocity U∞ at the inlet plane. The current study reveals that the pulsation can influence flow-physics in three possible ways as compared to uniform inflow conditions: (a) The vortex shedding pattern is seen to be more asymmetric for pulsating inflow than for uniform inflow. This needs to be validated with an experimental campaign devoted to the study of flow-asymmetricity due to pulsatile and uniform flow condition. (b) The dominant shedding frequency fd gets locked with respect to the frequency of the pulsating inflow fe, (for both the turbulent and transition regime) at a ratio of fe/fs0 equivalent to 0.65 – 0.75 (where fs0 is the vortex shedding frequency for uniform inflow) and ε = ΔU / (2πfeD) ≈ 0.2, where D is the diameter of the cylinder. This numerical observation is validated using the experimentally observed turbulent vortex regime work ( [1])in this range. For conditions with fe/fs0 > 0.75 the lock-in may happen at fe/2. (c) Compared to uniform inflow, the pulsating inflow leads to a larger drag coefficient. The drag coefficient is influenced by the ratios fe/fs0 and ΔU / U∞.


Author(s):  
Masahiro Watanabe

This paper deals with an experimental study on flow-induced vibrations of a two-dimensional flexible bellows structure subjected to fluid flow. Experiments are conducted to clarify the detailed characteristics of the flow-induced vibrations of periodic flexible convolutions coupled with vortexes generated in shear layer of the fluid flow. In the experiments, a test section consists of flexible convolutions supported by plate springs is set in a water channel and is subjected to water flow. The vibrations of the flexible convolution are measured with increasing flow velocity. The flow-induced responses are examined with changing the convolution pitch, number of the flexible convolutions and structural damping. Moreover, the dynamic behavior of the flow pattern coupled with the vibrating convolutions is visualized. As a result, it is found that flow-induced vibrations, with large amplitude and lock-in phenomenon, occur to the flexible convolutions. Two types of vibration modes with periodic large vortex street generated in the shear layer over the cavity between the convolutions are observed. It is clarified that the two types of periodic vortex streets are moving downstream synchronized with the flexible convolution vibrations. The vibration region (stability map) and the Strouhal number are clarified. Moreover, the excitation mechanism of the flow-induced vibration coupled with vortexes is discussed based on the flow patterns.


Author(s):  
Matthew Lennie ◽  
Alireza Selahi-Moghaddam ◽  
David Holst ◽  
Georgios Pechlivanoglou ◽  
Christian Navid Nayeri ◽  
...  

During the commissioning and stand-still cycles of wind turbines, the rotor is often stopped or even locked leaving the rotor blades at a standstill. When the blades are at a stand still, angles of attack on the blades can be very high and it is therefore possible that they experience vortex induced vibrations. This experiment and analysis helps to explain the different regimes of flow at very high angles of attack, particularly on moderately twisted and tapered blades. A single blade was tested at two different flow velocities at a range of angles of attack with flow tuft visualisation and hotwire measurements of the wake. Hotwire wake measurements were able to show the gradual inception and ending of certain flow regimes. The power spectral densities of these measurements were normalized in terms of Strouhal number based on the projected chord to show that certain wake features have a relatively constant Strouhal number. The shedding frequency appears then to be relatively independent of chord taper and twist. Vortex generators were tested but were found to have little influence in this case. Gurney flaps were found to modify the wake geometry, stall onset angles and in some cases the shedding frequency.


2011 ◽  
Vol 686 ◽  
pp. 426-450 ◽  
Author(s):  
Suresh Behara ◽  
Iman Borazjani ◽  
Fotis Sotiropoulos

AbstractFluid–structure interaction (FSI) simulations are carried out to investigate vortex-induced vibrations of a sphere, mounted on elastic supports in all three spatial directions. The reduced velocity (${U}^{\ast } $) is systematically varied in the range ${U}^{\ast } = 4\text{{\ndash}} 9$, while the Reynolds number and reduced mass are held fixed at $\mathit{Re}= 300$ and ${m}^{\ast } = 2$, respectively. In the lock-in regime, two distinct branches are observed in the response curve, each corresponding to a distinct type of vortex shedding, namely, hairpin and spiral vortices. While shedding of hairpin vortices has been observed in several previous investigations of stationary and vibrating spheres, the shedding of intertwined, longitudinal spiral vortices in the wake of a vibrating sphere is reported herein for the first time. When the wake is in the hairpin shedding mode, the sphere moves along a linear path in the transverse plane, while when spiral vortices are shed, the sphere vibrates along a circular orbit. In the spiral mode branch, the simulations reveal hysteresis in the response amplitude at the beginning of the lock-in regime. Lower-amplitude vibrations are found as the sphere sheds hairpin vortices for increasing ${U}^{\ast } $ up until the beginning of the synchronization regime. On the other hand, higher-amplitude oscillations persist for the spiral mode as ${U}^{\ast } $ is decreased from the point of the start of the synchronization. The hairpin mode is found to be unstable for the value of reduced velocity where the spiral and hairpin solution branches merge together. When this point is approached along the hairpin solution branch, the sphere naturally transitions from shedding hairpin vortices and moving along a linear path to shedding spiral vortices and moving along a circular path in the transverse plane. The spiral mode was not observed in the work of Horowitz & Williamson (J. Fluid Mech., vol. 651, 2010, pp. 251–294), who studied experimentally the vibration modes of a freely rising or falling sphere and only reported zigzag vibrations. Our results suggest that this apparent discrepancy between experiments and simulations should be attributed to the fact that, for the range of governing parameters considered in the simulations, the elastic supports act to suppress streamwise vibrations, thus subjecting the sphere to a nearly axisymmetric elasticity constraint and enabling it to vibrate transversely along a circular path.


Sign in / Sign up

Export Citation Format

Share Document