1315 Mechanism of Fatigue Crack Path in Anisotropic Commercial Pure Aluminum Sheets

2005 ◽  
Vol 2005.1 (0) ◽  
pp. 141-142
Author(s):  
Yudy Surya IRAWAN ◽  
Yoshihiko HAGIWARA ◽  
Shin-ichi OHYA
2007 ◽  
Vol 57 (2) ◽  
pp. 52-56
Author(s):  
Shinobu KANEKO ◽  
Kouki MORI ◽  
Hiroshi UTSUNOMIYA ◽  
Tetsuo SAKAI ◽  
Norio FURUSHIRO ◽  
...  

2007 ◽  
Vol 57 (8) ◽  
pp. 357-361 ◽  
Author(s):  
Hiizu OCHI ◽  
Yoshiaki YAMAMOTO ◽  
Takashi YAMAZAKI ◽  
Takeshi SAWAI ◽  
Gosaku KAWAI ◽  
...  

2007 ◽  
Vol 348-349 ◽  
pp. 129-132 ◽  
Author(s):  
Roberto G. Citarella ◽  
Friedrich G. Buchholz

In this paper detailed results of computational 3D fatigue crack growth simulations will be presented. The simulations for the crack path assessment are based on the DBEM code BEASY, and the FEM code ADAPCRACK 3D. The specimen under investigation is a SEN-specimen subject to pure anti-plane or out-of-plane four-point shear loading. The computational 3D fracture analyses deliver variable mixed mode II and III conditions along the crack front. Special interest is taken in this mode coupling effect to be found in stress intensity factor (SIF) results along the crack front. Further interest is taken in a 3D effect which is effective in particular at and adjacent to the two crack front corner points, that is where the crack front intersects the two free side surfaces of the specimen. Exactly at these crack front corner points fatigue crack growth initiates in the experimental laboratory test specimens, and develops into two separate anti-symmetric cracks with complex shapes, somehow similar to bird wings. The computational DBEM results are found to be in good agreement with these experimental findings and with FEM results previously obtained. Consequently, also for this new case, with complex 3D crack growth behaviour of two cracks, the functionality of the proposed DBEM and FEM approaches can be stated.


Author(s):  
Yuji Ozawa ◽  
Tatsuya Ishikawa ◽  
Yoichi Takeda

In order to clarify the mechanism of fatigue crack growth in alloy 625, which is a candidate material for use in advanced ultra supercritical power plants, the crack tip damage zone formation after a crack growth test conducted in high temperature steam was investigated. It was observed that the oxide thickness at the crack tip tended to increase with decreasing cyclic loading frequency. The crack path was a mix of transgranular and intergranular fractures. According to the grain reference orientation deviation (GROD) maps, it was revealed that the density of geometrically necessary dislocations (GNDs) in the matrix along the crack path and ahead of crack tip increased with an increase in the fatigue crack growth rate (FCGR) due to environmental effects. It was observed that (1) mobile dislocations at the crack surface were blocked due to the thick oxide layer, resulting in an increase in the density of GNDs, and (2) an increase in the density of GNDs might induce stress concentration at the crack tip, deformation twinning, and the acceleration of FCGRs.


Sign in / Sign up

Export Citation Format

Share Document