Management of Low-Temperature Heat Source by ORC Aided by Additional Heat Source

2016 ◽  
Vol 831 ◽  
pp. 270-277
Author(s):  
Dariusz Mikielewicz ◽  
Jan Wajs ◽  
Michał Bajor ◽  
Elżbieta Żmuda

In the paper presented is a concept to utilize waste heat from the power plant with the aid of the low-temperature ORC cycle. The ORC system is heated from two heat sources, the first one being the flow rate of waste heat obtained from the exhaust gases. Subsequently, the working fluid in the cycle is additionally heated by the condensing steam from the low pressure turbine extraction points increasing in such way the level of temperature of working fluid before turbine to 120°C. Examination of the results enables to conclude that the overall efficiency of the cycle increased from =51.958% to =52.304%. That is due to the fact that additional heat enabled to evaporate more working fluid. The total generated power increased to the value of NelRU=915.85MWe, which corresponds to about 1.5% increase in power.

Author(s):  
D. Y. Goswami ◽  
Gunnar Tamm ◽  
Sanjay Vijayaraghavan

A new thermodynamic cycle has been developed for the simultaneous production of power and cooling from low temperature heat sources. The proposed cycle combines the Rankine and absorption refrigeration cycles, providing power and cooling in desired ratios to best suit the application. A binary mixture of ammonia and water is used as the working fluid, providing a good thermal match with the sensible heat source over a range of boiling temperatures. Due to its low boiling point, the ammonia-rich vapor expands to refrigeration temperatures while work is extracted through the turbine. Absorption condensation of the vapor back into the bulk solution occurs near ambient temperatures. The proposed cycle is suitable as a bottoming cycle using waste heat from conventional power generation systems, or can utilize low temperature solar or geothermal renewable resources. The cycle can be scaled to residential, commercial or industrial uses, providing power as the primary goal while satisfying some of the cooling requirements of the application. The cycle is under both theoretical and experimental investigations. Initial parametric studies of how the cycle performs at various operating conditions showed the potential for the cycle to be optimized. Optimization studies performed over a range of heat source and heat sink temperatures showed that the cycle could be optimized for maximum work or cooling output, or for first or second law efficiencies. Depending on the heat source temperatures, as much as half of the output may be obtained as refrigeration under optimized conditions, with refrigeration temperatures as low as 205 K being achievable. Maximum second law efficiencies over 60% have been found with the heat source between 350 and 450 K. An experimental system was constructed to verify the theoretical results and to demonstrate the feasibility of the cycle. The investigation focused on the vapor generation and absorption processes, setting up for the power and refrigeration studies to come later. The turbine was simulated with an equivalent expansion process in this initial phase of testing. Results showed that the vapor generation and absorption processes work experimentally, over a range of operating conditions and in simulating the sources and sinks of interest. The potential for combined work and cooling output was evidenced in operating the system. Comparison to ideally simulated results verified that there are thermal and flow losses present, which were assessed to make both improvements in the experimental system and modifications in the simulations to include realistic losses.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 480 ◽  
Author(s):  
Gábor Györke ◽  
Axel Groniewsky ◽  
Attila Imre

One of the most crucial challenges of sustainable development is the use of low-temperature heat sources (60–200 °C), such as thermal solar, geothermal, biomass, or waste heat, for electricity production. Since conventional water-based thermodynamic cycles are not suitable in this temperature range or at least operate with very low efficiency, other working fluids need to be applied. Organic Rankine Cycle (ORC) uses organic working fluids, which results in higher thermal efficiency for low-temperature heat sources. Traditionally, new working fluids are found using a trial-and-error procedure through experience among chemically similar materials. This approach, however, carries a high risk of excluding the ideal working fluid. Therefore, a new method and a simple rule of thumb—based on a correlation related to molar isochoric specific heat capacity of saturated vapor states—were developed. With the application of this thumb rule, novel isentropic and dry working fluids can be found applicable for given low-temperature heat sources. Additionally, the importance of molar quantities—usually ignored by energy engineers—was demonstrated.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1853 ◽  
Author(s):  
Pavel Neuberger ◽  
Radomír Adamovský

The efficiency of a heat pump energy system is significantly influenced by its low-temperature heat source. This paper presents the results of operational monitoring, analysis and comparison of heat transfer fluid temperatures, outputs and extracted energies at the most widely used low temperature heat sources within 218 days of a heating period. The monitoring involved horizontal ground heat exchangers (HGHEs) of linear and Slinky type, vertical ground heat exchangers (VGHEs) with single and double U-tube exchanger as well as the ambient air. The results of the verification indicated that it was not possible to specify clearly the most advantageous low-temperature heat source that meets the requirements of the efficiency of the heat pump operation. The highest average heat transfer fluid temperatures were achieved at linear HGHE (8.13 ± 4.50 °C) and double U-tube VGHE (8.13 ± 3.12 °C). The highest average specific heat output 59.97 ± 41.80 W/m2 and specific energy extracted from the ground mass 2723.40 ± 1785.58 kJ/m2·day were recorded at single U-tube VGHE. The lowest thermal resistance value of 0.07 K·m2/W, specifying the efficiency of the heat transfer process between the ground mass and the heat transfer fluid, was monitored at linear HGHE. The use of ambient air as a low-temperature heat pump source was considered to be the least advantageous in terms of its temperature parameters.


2011 ◽  
Vol 32 (3) ◽  
pp. 57-70 ◽  
Author(s):  
Dariusz Mikielewicz ◽  
Jarosław Mikielewicz

Utilisation of bleed steam heat to increase the upper heat source temperature in low-temperature ORC In the paper presented is a novel concept to utilize the heat from the turbine bleed to improve the quality of working fluid vapour in the bottoming organic Rankine cycle (ORC). That is a completely novel solution in the literature, which contributes to the increase of ORC efficiency and the overall efficiency of the combined system of the power plant and ORC plant. Calculations have been accomplished for the case when available is a flow rate of low enthalpy hot water at a temperature of 90 °C, which is used for preliminary heating of the working fluid. That hot water is obtained as a result of conversion of exhaust gases in the power plant to the energy of hot water. Then the working fluid is further heated by the bleed steam to reach 120 °C. Such vapour is subsequently directed to the turbine. In the paper 5 possible working fluids were examined, namely R134a, MM, MDM, toluene and ethanol. Only under conditions of 120 °C/40 °C the silicone oil MM showed the best performance, in all other cases the ethanol proved to be best performing fluid of all. Results are compared with the "stand alone" ORC module showing its superiority.


2014 ◽  
Vol 3 (3) ◽  
pp. 34-56 ◽  
Author(s):  
Vijay Chauhan ◽  
P. Anil Kishan ◽  
Sateesh Gedupudi

A combined refrigeration and power cycle, which uses ammonia-water as the working fluid, is proposed by combining Rankine and vapour absorption cycles with an advantage of varying refrigeration capacity to power output ratio. The study investigates the usage of low temperature heat sources for the cycle operation. Results of parametric analysis are presented, which show the scope for optimization. Results of thermodynamic optimization of the cycle for second law efficiency performed using genetic algorithm for different ambient temperatures are also presented. The cycle shows good potential for obtaining refrigeration and power generation.


2019 ◽  
Vol 27 (02) ◽  
pp. 1950012 ◽  
Author(s):  
Zeynab Seyfouri ◽  
Mehran Ameri ◽  
Mozaffar Ali Mehrabian

In the present study, a totally heat-driven refrigeration system is proposed and thermodynamically analyzed. This system uses a low-temperature heat source such as geothermal energy or solar energy to produce cooling at freezing temperatures. The proposed system comprises a Rankine cycle (RC) and a hybrid GAX (HGAX) refrigeration cycle, in which the RC provides the power requirement of the HGAX cycle. An ammonia–water mixture is used in both RC and HGAX cycles as the working fluid. A comparative study is conducted in which the proposed system is compared with two other systems using GAX cycle and/or a single stage cycle, as the refrigeration cycle. The study shows that the proposed system is preferred to produce cooling at temperatures from 2∘C to [Formula: see text]C. A detailed parametric analysis of the proposed system is carried out. The results of the analysis show that the system can produce cooling at [Formula: see text]C using a low-temperature heat source at 133.5∘C with the exergy efficiency of about 20% without any input power. By increasing the heat source temperature to 160∘C, an exergy efficiency of 25% can be achieved.


2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Md. Tareq Chowdhury ◽  
Esmail M. A. Mokheimer

Abstract Even though the renewable technologies are getting a gradually increasing share of the energy industry, the momentum of its growth is far away from outweighing the dominance of fossil fuel. Due to the concern for ozone depletion, global warming, and many more environmental hazards caused by fossil fuels, it is essential to substitute the conventional energy sources with renewables. Since this replacement cannot be done overnight, the conventional energy technologies should be integrated with renewables to minimize the pace of adverse effects on fossil fuel–based industries in the meantime. This way, the industries can be more efficient by utilizing waste heat, which accounts for 50% of the total energy generated now. This review paper outlines the role of solar energy in the generation of power and cooling systems that are capable of utilizing low-temperature heat sources below 400 °C. The review is primarily concentrated on line-focused concentrated solar power (CSP)-assisted solar technologies to be integrated with organic Rankine cycle (ORC) and absorption cooling systems. Photovoltaic and similar multigeneration systems are also discussed in brief.


2006 ◽  
Vol 2006.3 (0) ◽  
pp. 183-184
Author(s):  
Hidehiko NODA ◽  
Takayuki MASANO ◽  
Daichi NAKANO ◽  
Satoshi KAMEI ◽  
Tomoyuki NAGAHATA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document