Pressure Drop in the Transient Upward Two-Phase Returning Flow during the Self-Operative Heat Transportation

2002 ◽  
Vol 2002 (0) ◽  
pp. 247-248
Author(s):  
Katsuhiko KADOGUCHI ◽  
Masakazu YAMAZAKI
Keyword(s):  
The Self ◽  
1989 ◽  
Vol 111 (2) ◽  
pp. 538-545 ◽  
Author(s):  
B. L. Bhatt ◽  
G. L. Wedekind ◽  
K. Jung

This paper presents the results of an extension of an experimental and theoretical investigation of an unstable flow phenomenon that leads to self-sustained limit-cycle-type oscillations of large amplitude, and which, under certain conditions, can involve flow reversals. The influence of two-phase pressure drop is examined and shown to have a stabilizing effect on the instability. Inclusion of the two-phase pressure drop as part of the downstream throttling allows the utilization of a previously developed linearized analysis, based on the system mean void fraction model, to predict successfully the experimentally observed stability boundary.


Author(s):  
Jin Young Park ◽  
Eun Jung Choi ◽  
Min Soo Kim

2007 ◽  
Author(s):  
Wenhong Liu ◽  
Liejin Guo ◽  
Ximin Zhang ◽  
Kai Lin ◽  
Long Yang ◽  
...  

1985 ◽  
Vol 50 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Andreas Zahn ◽  
Lothar Ebner ◽  
Kurt Winkler ◽  
Jan Kratochvíl ◽  
Jindřich Zahradník

The effect of two-phase flow regime on decisive hydrodynamic and mass transfer characteristics of horizontal-tube gas-liquid reactors (pressure drop, liquid holdup, kLaL) was determined in a cocurrent-flow experimental unit of the length 4.15 m and diameter 0.05 m with air-water system. An adjustable-height weir was installed in the separation chamber at the reactor outlet to simulate the effect of internal baffles on reactor hydrodynamics. Flow regime maps were developed in the whole range of experimental gas and liquid flow rates both for the weirless arrangement and for the weir height 0.05 m, the former being in good agreement with flow-pattern boundaries presented by Mandhane. In the whole range of experi-mental conditions pressure drop data could be well correlated as a function of gas and liquid flow rates by an empirical exponential-type relation with specific sets of coefficients obtained for individual flow regimes from experimental data. Good agreement was observed between values of pressure drop obtained for weirless arrangement and data calculated from the Lockhart-Martinelli correlation while the contribution of weir to the overall pressure drop was well described by a relation proposed for the pressure loss in closed-end tubes. In the region of negligible weir influence values of liquid holdup were again succesfully correlated by the Lockhart-Martinelli relation while the dependence of liquid holdup data on gas and liquid flow rates obtained under conditions of significant weir effect (i.e. at low flow rates of both phases) could be well described by an empirical exponential-type relation. Results of preliminary kLaL measurements confirmed the decisive effect of the rate of energy dissipation on the intensity of interfacial mass transfer in gas-liquid dispersions.


2021 ◽  
Vol 11 (15) ◽  
pp. 6972
Author(s):  
Lihua Cui ◽  
Fei Ma ◽  
Tengfei Cai

The cavitation phenomenon of the self-resonating waterjet for the modulation of erosion characteristics is investigated in this paper. A three-dimensional computational fluid dynamics (CFD) model was developed to analyze the unsteady characteristics of the self-resonating jet. The numerical model employs the mixture two-phase model, coupling the realizable turbulence model and Schnerr–Sauer cavitation model. Collected data from experimental tests were used to validate the model. Results of numerical simulations and experimental data frequency bands obtained by the Fast Fourier transform (FFT) method were in very good agreement. For better understanding the physical phenomena, the velocity, the pressure distributions, and the cavitation characteristics were investigated. The obtained results show that the sudden change of the flow velocity at the outlet of the nozzle leads to the forms of the low-pressure zone. When the pressure at the low-pressure zone is lower than the vapor pressure, the cavitation occurs. The flow field structure of the waterjet can be directly perceived through simulation, which can provide theoretical support for realizing the modulation of the erosion characteristics, optimizing nozzle structure.


Sign in / Sign up

Export Citation Format

Share Document