1A2-M06 Somatic Sensation-Biofeedback System for Rehabilitation of Hemiplegia : Comparison of RT-Assisted Motor Learning Performance in Supervised and Reinforcement Learning(Rehabilitation Robotics and Mechatronics(2))

2012 ◽  
Vol 2012 (0) ◽  
pp. _1A2-M06_1-_1A2-M06_2
Author(s):  
Hiroyasu IWATA ◽  
Shotaro IIDA ◽  
Naoyuki IIMURA ◽  
Shimon SUGAWARA ◽  
Shigeki SUGANO
1993 ◽  
Vol 38 (12) ◽  
pp. 1336-1336
Author(s):  
Terri Gullickson ◽  
Pamela Ramser

2021 ◽  
Author(s):  
Corson N Areshenkoff ◽  
Daniel J Gale ◽  
Joe Y Nashed ◽  
Dominic Standage ◽  
John Randall Flanagan ◽  
...  

Humans vary greatly in their motor learning abilities, yet little is known about the neural mechanisms that underlie this variability. Recent neuroimaging and electrophysiological studies demonstrate that large-scale neural dynamics inhabit a low-dimensional subspace or manifold, and that learning is constrained by this intrinsic manifold architecture. Here we asked, using functional MRI, whether subject-level differences in neural excursion from manifold structure can explain differences in learning across participants. We had subjects perform a sensorimotor adaptation task in the MRI scanner on two consecutive days, allowing us to assess their learning performance across days, as well as continuously measure brain activity. We find that the overall neural excursion from manifold activity in both cognitive and sensorimotor brain networks is associated with differences in subjects' patterns of learning and relearning across days. These findings suggest that off-manifold activity provides an index of the relative engagement of different neural systems during learning, and that intersubject differences in patterns of learning and relearning across days are related to reconfiguration processes in cognitive and sensorimotor networks during learning.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1576 ◽  
Author(s):  
Xiaomao Zhou ◽  
Tao Bai ◽  
Yanbin Gao ◽  
Yuntao Han

Extensive studies have shown that many animals’ capability of forming spatial representations for self-localization, path planning, and navigation relies on the functionalities of place and head-direction (HD) cells in the hippocampus. Although there are numerous hippocampal modeling approaches, only a few span the wide functionalities ranging from processing raw sensory signals to planning and action generation. This paper presents a vision-based navigation system that involves generating place and HD cells through learning from visual images, building topological maps based on learned cell representations and performing navigation using hierarchical reinforcement learning. First, place and HD cells are trained from sequences of visual stimuli in an unsupervised learning fashion. A modified Slow Feature Analysis (SFA) algorithm is proposed to learn different cell types in an intentional way by restricting their learning to separate phases of the spatial exploration. Then, to extract the encoded metric information from these unsupervised learning representations, a self-organized learning algorithm is adopted to learn over the emerged cell activities and to generate topological maps that reveal the topology of the environment and information about a robot’s head direction, respectively. This enables the robot to perform self-localization and orientation detection based on the generated maps. Finally, goal-directed navigation is performed using reinforcement learning in continuous state spaces which are represented by the population activities of place cells. In particular, considering that the topological map provides a natural hierarchical representation of the environment, hierarchical reinforcement learning (HRL) is used to exploit this hierarchy to accelerate learning. The HRL works on different spatial scales, where a high-level policy learns to select subgoals and a low-level policy learns over primitive actions to specialize on the selected subgoals. Experimental results demonstrate that our system is able to navigate a robot to the desired position effectively, and the HRL shows a much better learning performance than the standard RL in solving our navigation tasks.


2019 ◽  
Author(s):  
Jürgen Birklbauer

This thesis addresses different manifestations and practical implementations of movement variability in respect to their beneficial effects on movement coordination and learning. The focal point of this topic is formed by the comparison between the contextual interference paradigm and the differential learning approach, representing two variable practice strategies found to improve motor learning performance under certain conditions. The theoretical backgrounds and empirical findings of each approach are thoroughly reviewed in the first part of this work. These theoretical concepts, and their resultant practical training approaches, arrive at the notion of an optimal magnitude and structure of movement variability that should be encouraged during practice. The second part of this work presents a parallelgroup study designed to contrast the effects of a high contextual interference and schema-based practice regime with two variants of differential training on the adoption of two indoor hockey skills in beginners.


2019 ◽  
Vol 31 (4) ◽  
pp. 520-525 ◽  
Author(s):  
Toshiyuki Yasuda ◽  
Kazuhiro Ohkura ◽  
◽  

Swarm robotic systems (SRSs) are a type of multi-robot system in which robots operate without any form of centralized control. The typical design methodology for SRSs comprises a behavior-based approach, where the desired collective behavior is obtained manually by designing the behavior of individual robots in advance. In contrast, in an automatic design approach, a certain general methodology is adopted. This paper presents a deep reinforcement learning approach for collective behavior acquisition of SRSs. The swarm robots are expected to collect information in parallel and share their experience for accelerating their learning. We conducted real swarm robot experiments and evaluated the learning performance of the swarm in a scenario where the robots consecutively traveled between two landmarks.


2012 ◽  
Vol 29 (3) ◽  
pp. 103-110 ◽  
Author(s):  
Abbas Orand ◽  
Junichi Ushiba ◽  
Yutaka Tomita ◽  
Satoashi Honda

Sign in / Sign up

Export Citation Format

Share Document