A14 The influence of a supporting system on aerodynamic loads of a soccer ball in wind tunnel test

Author(s):  
Kazuya SEO ◽  
Takeshi ASAI ◽  
Osamu KOBAYASHI
2017 ◽  
Vol 2017 (4) ◽  
pp. 82-102
Author(s):  
Paweł Ruchała ◽  
Robert Placek ◽  
Wit Stryczniewicz ◽  
Jan Matyszewski ◽  
Dawid Cieśliński ◽  
...  

Abstract The paper presents results of wind tunnel tests of the Experimental Rocket Platform (ERP), which is developed in Institute of Aviation. It is designed as an easy accessible and affordable platform for microgravity experiments. Proposed design enables to perform experiments in microgravity for almost 150 seconds with apogee of about 100 km. The full-scale model of the ERP has been investigated in the T-3 wind tunnel in Institute of Aviation. During the investigation, the aerodynamic loads of the rocket has been measured for the angle of attack up to 10° and the different rotation angle around the longitudinal axis (up to 90°, depending on the configuration). Three configurations has been investigated: • without fins and boosters • with fins and without boosters • with fins and boosters Additionally, the measurements of velocity field around the ERP using the Particle Image Velocimetry (PIV) has been performed. Based on the wind tunnel test, an influence of fins and boosters on aerodynamic characteristics of the rocket has been described. Results of the wind tunnel tests show relatively high contribution of boosters in total aerodynamic drag. Some conclusions concerning performance and stability of the rocket have been presented.


2021 ◽  
Author(s):  
David F. Castillo Zuñiga ◽  
Alain Giacobini Souza ◽  
Roberto G. da Silva ◽  
Luiz Carlos Sandoval Góes

Author(s):  
Bruno Ricardo Massucatto Padilha ◽  
Guilherme Barufaldi ◽  
ROBERTO GIL ANNES DA SILVA

2016 ◽  
Vol 7 (2) ◽  
pp. 131-138
Author(s):  
Ivransa Zuhdi Pane

Data post-processing plays important roles in a wind tunnel test, especially in supporting the validation of the test results and further data analysis related to the design activities of the test objects. One effective solution to carry out the data post-processing in an automated productive manner, and thus eliminate the cumbersome conventional manual way, is building a software which is able to execute calculations and have abilities in presenting and analyzing the data in accordance with the post-processing requirement. Through several prototype development cycles, this work attempts to engineer and realize such software to enhance the overall wind tunnel test activities. Index Terms—software engineering, wind tunnel test, data post-processing, prototype, pseudocode


2021 ◽  
Vol 11 (8) ◽  
pp. 3315
Author(s):  
Fabio Rizzo

Experimental wind tunnel test results are affected by acquisition times because extreme pressure peak statistics depend on the length of acquisition records. This is also true for dynamic tests on aeroelastic models where the structural response of the scale model is affected by aerodynamic damping and by random vortex shedding. This paper investigates the acquisition time dependence of linear transformation through singular value decomposition (SVD) and its correlation with floor accelerometric signals acquired during wind tunnel aeroelastic testing of a scale model high-rise building. Particular attention was given to the variability of eigenvectors, singular values and the correlation coefficient for two wind angles and thirteen different wind velocities. The cumulative distribution function of empirical magnitudes was fitted with numerical cumulative density function (CDF). Kolmogorov–Smirnov test results are also discussed.


2019 ◽  
Vol 52 (12) ◽  
pp. 128-133
Author(s):  
Yoshiro Hamada ◽  
Kenichi Saitoh ◽  
Noboru Kobiki

Sign in / Sign up

Export Citation Format

Share Document